Gotowa bibliografia na temat „Dynamic membranes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Dynamic membranes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Dynamic membranes"
Madmoune, Y., M. Benhamou, H. Kaïdi i M. Chahid. "Dynamic properties of troubled fluid membranes". International Journal of Academic Research 5, nr 5 (10.10.2013): 5–13. http://dx.doi.org/10.7813/2075-4124.2013/5-5/a.1.
Pełny tekst źródłaBezanilla, Magdalena, Amy S. Gladfelter, David R. Kovar i Wei-Lih Lee. "Cytoskeletal dynamics: A view from the membrane". Journal of Cell Biology 209, nr 3 (11.05.2015): 329–37. http://dx.doi.org/10.1083/jcb.201502062.
Pełny tekst źródłaMatkó, Janos, Janos Szöllösi, Lajos Trón i Sandor Damjanovich. "Luminescence spectroscopic approaches in studying cell surface dynamics". Quarterly Reviews of Biophysics 21, nr 4 (listopad 1988): 479–544. http://dx.doi.org/10.1017/s0033583500004637.
Pełny tekst źródłaLiu, Chuang, i Linan Fan. "Evolutionary algorithm based on dynamical structure of membrane systems in uncertain environments". International Journal of Biomathematics 09, nr 02 (14.01.2016): 1650017. http://dx.doi.org/10.1142/s1793524516500170.
Pełny tekst źródłaGupta, Sudipta, i Rana Ashkar. "The dynamic face of lipid membranes". Soft Matter 17, nr 29 (2021): 6910–28. http://dx.doi.org/10.1039/d1sm00646k.
Pełny tekst źródłaAltman, Marc, David Hasson i Raphael Semiat. "REVIEW OF DYNAMIC MEMBRANES". Reviews in Chemical Engineering 15, nr 1 (styczeń 1999): 1–40. http://dx.doi.org/10.1515/revce.1999.15.1.1.
Pełny tekst źródłaJaksch, Sebastian, Alexandros Koutsioubas, Stefan Mattauch, Olaf Holderer i Henrich Frielinghaus. "Measurements of Dynamic Contributions to Coherent Neutron Scattering". Colloids and Interfaces 2, nr 3 (7.08.2018): 31. http://dx.doi.org/10.3390/colloids2030031.
Pełny tekst źródłaColom, Adai, Lorena Redondo-Morata, Nicolas Chiaruttini, Aurélien Roux i Simon Scheuring. "Dynamic remodeling of the dynamin helix during membrane constriction". Proceedings of the National Academy of Sciences 114, nr 21 (8.05.2017): 5449–54. http://dx.doi.org/10.1073/pnas.1619578114.
Pełny tekst źródłaLima-Rodriguez, Antonia, Antonio Gonzalez-Herrera i Jose Garcia-Manrique. "Study of the Dynamic Behaviour of Circular Membranes with Low Tension". Applied Sciences 9, nr 21 (5.11.2019): 4716. http://dx.doi.org/10.3390/app9214716.
Pełny tekst źródłaKanagabasai, Lenin. "Factual power loss reduction by dynamic membrane evolutionary algorithm". International Journal of Advances in Applied Sciences 10, nr 2 (1.06.2021): 99. http://dx.doi.org/10.11591/ijaas.v10.i2.pp99-106.
Pełny tekst źródłaRozprawy doktorskie na temat "Dynamic membranes"
Magi, Ross. "Dynamic behavior of biological membranes". Thesis, The University of Utah, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3680576.
Pełny tekst źródłaBiological membranes are important structural units in the cell. Composed of a lipid bilayer with embedded proteins, most exploration of membranes has focused on the proteins. While proteins play a vital role in membrane function, the lipids themselves can behave in dynamic ways which affect membrane structure and function. Furthermore, the dynamic behavior of the lipids can affect and be affected by membrane geometry. A novel fluid membrane model is developed in which two different types of lipids flow in a deforming membrane, modelled as a two-dimensional Riemannian manifold that resists bending. The two lipids behave like viscous Newtonian fluids whose motion is determined by realistic physical forces. By examining the stability of various shapes, it is shown that instability may result if the two lipids forming the membrane possess biophysical qualities, which cause them to respond differently to membrane curvature. By means of numerical simulation of a simplified model, it is shown that this instability results in curvature induced phase separation. Applying the simplified model to the Golgi apparatus, it is hypothesized that curvature induced phase separation may occur in a Golgi cisterna, aiding in the process of protein sorting.
In addition to flowing tangentially in the membrane, lipids also flip back and forth between the two leaflets in the bilayer. While traditionally assumed to occur very slowly, recent experiments have indicated that lipid flip-flop may occur rapidly. Two models are developed that explore the effect of rapid flip-flop on membrane geometry and the effect of a pH gradient on the distribution of charged lipids in the leaflets of the bilayer. By means of a stochastic model, it is shown that even the rapid flip-flop rates observed are unlikely to be significant inducers of membrane curvature. By means of a nonlinear Poisson- Boltzmann model, it is shown that pH gradients are unlikely to be significant inducers of bilayer asymmetry under physiological conditions.
Waheed, Qaiser. "Molecular Dynamic Simulations of Biological Membranes". Doctoral thesis, KTH, Teoretisk biologisk fysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-102268.
Pełny tekst źródłaQC 20120913
Turkson, Abraham K. "Electro-ultrafiltration with rotating dynamic membranes". Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=72036.
Pełny tekst źródłaFour dynamic membranes, Zr(IV) oxide, calcium oleate, poly-2-vinylpyridine and cadmium sulfide, were used to filter bovine serum albumin (BSA) in a disodium phosphate solution at pH = 8 and Prussian blue in distilled water. Prussian blue is a particle of 0.01(mu)m diameter with a zeta potential of -41mV while BSA is a macromolecule of 69,000 molecular weight, a Stokes-Einstein radius of 0.0038(mu)m and a zeta potential of -23.3mV at pH = 8. For BSA, the flux declined with time while the rejection increased. Filtrate fluxes increased with rotation rate and electric field and declined with concentration for both feeds. The flux declined beyond N = 2000rpm and was constant above C(,0) = 5.0wt%. For Prussian blue, the rejection was greater than 90% at all levels of E, N and C(,0). For BSA, the rejection increased with rotation rate and declined with concentration. The BSA rejection declined above N = 2000rpm and was constant beyond C(,0) = 0.5wt%.
A mathematical model was derived to predict the time variation of filtrate flux and a rejection model was used to predict the effect of surface concentration on BSA rejection.
Ip, Anita Wai Ching Chemical Sciences & Engineering Faculty of Engineering UNSW. "Dynamic membranes: formation and characterisation studies". Awarded by:University of New South Wales, 2005. http://handle.unsw.edu.au/1959.4/37836.
Pełny tekst źródłaSOARES, RENATA MACHADO. "DYNAMIC ANALYSIS OF HYPERLASTIC CIRCULAR MEMBRANES". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2009. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=13790@1.
Pełny tekst źródłaCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
FUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO
Nesta tese são estudadas as vibrações não-lineares de membranas circulares inicialmente tracionadas sujeitas a deformações finitas. O material da membrana é modelado como um material hiperelástico neo-Hookeano, isotrópico e incompressível. Baseada na teoria de deformações finitas para membranas hiperelásticas, uma formulação variacional é desenvolvida. Primeiro a solução da membrana sob tração radial uniforme é obtida e então as equações de movimento da membrana são obtidas pelo princípio de Hamilton. A partir das equações linearizadas, as freqüências e os modos de vibração da membrana são obtidos analiticamente. Os modos naturais são usados para aproximar o campo de deformações não-linear usando o método de Galerkin e modelos de ordem reduzida são deduzidos através do método de Karhunen-Loève e de métodos analíticos. Além disso, estuda-se a influência da variação da massa específica e da espessura ao longo da direção radial da membrana nas vibrações. A seguir a mesma metodologia é utilizada para uma membrana anular. Por fim, estudam-se as vibrações não-lineares da membrana anular acoplada a uma inclusão rígida que insere tensões de tração na membrana, pois, devido ao seu peso próprio, provoca deslocamentos estáticos transversais e axissimétricos na membrana. Os mesmos problemas são analisados por elementos finitos utilizando o programa comercial Abaqus.
This work presents an analysis of the nonlinear vibration response of a prestretched hyperelastic circular membrane subjected to finite deformations. The membrane material is assumed to be isotropic, homogeneous and neo-Hookean. Based on the theory of finite deformations for hyperelastic membranes, a variational formulation is developed. First the exact solution of the membrane under a uniform radial stretch is obtained and then the equations of motion of the pre-stretched membrane are derived using the Hamilton’s principle. From the linearized equations of motion, the natural frequencies and mode shapes of the membrane are obtained analytically. Then the natural modes are used to approximate the nonlinear deformation field using the Galerkin method. Several reduced order models are tested using the Karhunen-Loève method and analytical methods. Besides, the influence of the variation of the membrane thickness and material density along the radial direction of the membrane on the vibrations is investigated. The same methodology it is used for the annular membrane. Finally, the non-linear vibrations of the annular membrane coupled to a rigid inclusion are studied. The rigid inclusion inserts traction forces in the membrane and its own weight causes static transverse and radial displacements in the membrane. The same problems are analyzed by finite elements using the commercial program Abaqus®.
McCarthy, Nicola L. C. "Imaging dynamic patterning in lipid membranes". Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/44075.
Pełny tekst źródłaNandurkar, Kuldeep Pandurang. "Static and Dynamic Behavior of Stress Coated Membranes". Thesis, Montana State University, 2006. http://etd.lib.montana.edu/etd/2006/nandurkar/NandurkarK0806.pdf.
Pełny tekst źródłaAl-Malack, Muhammad Hassan. "Applications of dynamic membranes to crossflow microfiltration of secondary effluent". Thesis, University of Newcastle Upon Tyne, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335944.
Pełny tekst źródłaThurmond, Robin Leroy. "Average and dynamic properties of membrane lipids studied by deuterium NMR spectroscopy". Diss., The University of Arizona, 1992. http://hdl.handle.net/10150/185835.
Pełny tekst źródłaSaggiomo, Vittorio [Verfasser]. "Ion transport across membranes mediated by a dynamic combinatorial library / Vittorio Saggiomo". Kiel : Universitätsbibliothek Kiel, 2010. http://d-nb.info/1019984619/34.
Pełny tekst źródłaKsiążki na temat "Dynamic membranes"
Transmembrane dynamic lipids. Hoboken, NJ: Wiley, 2012.
Znajdź pełny tekst źródłaMartonosi, Anthony N. The Enzymes of Biological Membranes: Volume 1 Membrane Structure and Dynamics. Boston, MA: Springer US, 1985.
Znajdź pełny tekst źródłaNATO Advanced Study Institute on Dynamics and Biogenesis of Membranes (1989 Cargèse, France). Dynamics and biogenesis of membranes. Berlin: Springer-Verlag, 1990.
Znajdź pełny tekst źródłaSansom, M. S. P., i Philip Charles Biggin. Molecular simulations and biomembranes: From biophysics to function. Cambridge: Royal Society of Chemistry, 2010.
Znajdź pełny tekst źródłaOp den Kamp, J. A. F., red. Dynamics and Biogenesis of Membranes. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74194-4.
Pełny tekst źródłaChattopadhyay, Amitabha, red. Membrane Organization and Dynamics. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66601-3.
Pełny tekst źródłaQuinn, Peter J., red. Membrane Dynamics and Domains. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4757-5806-1.
Pełny tekst źródłaOp den Kamp, Jos A. F., red. Dynamics of Membrane Assembly. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02860-5.
Pełny tekst źródłaOp den Kamp, Jos A. F., red. Biological Membranes: Structure, Biogenesis and Dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78846-8.
Pełny tekst źródłaWirtz, K. W. A., red. Membrane Receptors, Dynamics, and Energetics. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5335-5.
Pełny tekst źródłaCzęści książek na temat "Dynamic membranes"
Park, Chi Hoon. "Dynamic Mechanical Analysis". W Encyclopedia of Membranes, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_1093-5.
Pełny tekst źródłaKovács, Zoltán. "Dynamic-Volume Diafiltration". W Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_665-3.
Pełny tekst źródłaJaffrin, M. Y. "Dynamic Membrane Microfiltration". W Encyclopedia of Membranes, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_957-2.
Pełny tekst źródłaKovács, Zoltán. "Dynamic-Volume Diafiltration". W Encyclopedia of Membranes, 620–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_665.
Pełny tekst źródłaJaffrin, Michel. "Dynamic Membrane Microfiltration". W Encyclopedia of Membranes, 616–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_957.
Pełny tekst źródłaPark, Chi Hoon. "Dynamic Mechanical Analysis". W Encyclopedia of Membranes, 607–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_1093.
Pełny tekst źródłaYampolskii, Yuri. "Dynamic Free Volume". W Encyclopedia of Membranes, 606. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_193.
Pełny tekst źródłaPiacentini, Emma, Alessandra Imbrogno i Richard G. Holdich. "Dynamic Membrane Emulsification". W Encyclopedia of Membranes, 610–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_194.
Pełny tekst źródłaYampolskii, Yuri. "Dynamic Free Volume". W Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_193-4.
Pełny tekst źródłaPiacentini, E., A. Imbrogno i R. G. Holdich. "Dynamic Membrane Emulsification". W Encyclopedia of Membranes, 1–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_194-1.
Pełny tekst źródłaStreszczenia konferencji na temat "Dynamic membranes"
Hossain, N., Kyeongsik Woo i Christopher Jenkins. "Dynamic Response of Systematically Creased Membranes". W 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-1806.
Pełny tekst źródłaFox, Jason W., i Nakhiah C. Goulbourne. "Nonlinear dynamic characteristics of dielectric elastomer membranes". W The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, redaktor Yoseph Bar-Cohen. SPIE, 2008. http://dx.doi.org/10.1117/12.776692.
Pełny tekst źródłaKoombua, Kittisak, Ramana M. Pidaparti, P. Worth Longest i Gary M. Atkinson. "Micropump With Six Vibrating Membranes: Design Analysis". W ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49487.
Pełny tekst źródłaShi, Hongyang, Thassyo Pinto, Xinda Qi, Demetris Coleman, Silvia Matt, Weilin Hou i Xiaobo Tan. "Dynamic Modeling of Voice Coil Motor-Actuated Flexible Membranes". W ASME 2020 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/dscc2020-3321.
Pełny tekst źródłaRomero, T., i W. Me´rida. "Transient Water Transport in Nafion Membranes Under Activity Gradients". W ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33317.
Pełny tekst źródłaYoung, Leyland, i Perngjin Pai. "Numerical and Experimental Dynamic Characteristics of Thin-Film Membranes". W 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-1618.
Pełny tekst źródłaCastro-Román, Francisco, Mauricio Carbajal, Luis Manuel Montaño, Oscar Rosas-Ortiz, Sergio A. Tomas Velazquez i Omar Miranda. "Dynamic Structure of Lipid Membranes: Lamellar Diffraction in Concert with Molecular Dynamics Simulations". W Advanced Summer School in Physics 2007. AIP, 2007. http://dx.doi.org/10.1063/1.2825115.
Pełny tekst źródłaCheddie, Denver. "Dynamic Modeling of Water Sorption in PEM Fuel Cells". W ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2009. http://dx.doi.org/10.1115/fuelcell2009-85016.
Pełny tekst źródłaKolsti, Kyle, i Donald Kunz. "Dynamic Simulation of Geometrically Nonlinear Membranes Using Hermite Time Interpolation." W 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
20th AIAA/ASME/AHS Adaptive Structures Conference
14th AIAA. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-1973.
Gerbach, R., F. Naumann, M. Ebert, J. Bagdahn, J. Klattenhoff i C. Rembe. "Dynamic Analyses of Membranes and Thin Films on Wafer Level". W 2007 IEEE International Conference on Microelectronic Test Structures. IEEE, 2007. http://dx.doi.org/10.1109/icmts.2007.374486.
Pełny tekst źródłaRaporty organizacyjne na temat "Dynamic membranes"
Wolfe, W. P., J. M. Nelsen, R. S. Baty, G. A. Laguna, F. J. Mello, C. E. Hailey i N. T. Snyder. A gridless technique for fluid/structural dynamic coupling on flexible membranes. Office of Scientific and Technical Information (OSTI), styczeń 1996. http://dx.doi.org/10.2172/201803.
Pełny tekst źródłaParikh, Atul N., Sunil K. Sinha, Jeremy Sanborn, Mira Patel, Viviane Ngassam, Doug Gettel, Thomas Wilkop i in. Dynamical Self-Assembly: Constrained phase separation and mesoscale dynamics in lipid membranes (Final Report). Office of Scientific and Technical Information (OSTI), czerwiec 2019. http://dx.doi.org/10.2172/1525891.
Pełny tekst źródłaWoolf, Thomas B., Paul Stewart Crozier i Mark Jackson Stevens. Molecular dynamics of membrane proteins. Office of Scientific and Technical Information (OSTI), październik 2004. http://dx.doi.org/10.2172/919637.
Pełny tekst źródłaGutman, Menachem. Probing of Membrane's Surface by Dynamic Measurements of Proton Diffusion. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1991. http://dx.doi.org/10.21236/ada230747.
Pełny tekst źródłaDutta, Prabir K. Photochemical charge separation in zeolites: Electron transfer dynamics, nanocrystals and zeolitic membranes. Final technical report. Office of Scientific and Technical Information (OSTI), wrzesień 2001. http://dx.doi.org/10.2172/809077.
Pełny tekst źródłaGodfrey, Thomas A. Verification of Dynamic Load Factor for Analysis of Airblast-Loaded Membrane Shelter Panels by Nonlinear Finite Element Calculations. Fort Belvoir, VA: Defense Technical Information Center, lipiec 1991. http://dx.doi.org/10.21236/ada238939.
Pełny tekst źródłaHaskins, William E., Michael D. Leavell, Pamela Lane, Richard B. Jacobsen, Joohee Hong, Marites J. Ayson, Nichole L. Wood i in. Chemical crosslinking and mass spectrometry studies of the structure and dynamics of membrane proteins and receptors. Office of Scientific and Technical Information (OSTI), marzec 2005. http://dx.doi.org/10.2172/922763.
Pełny tekst źródłaTiburu, Elvis K. Determination of the Dynamics, Structure, and Orientation of the Transmembrane Segment of ErbB2 in Model Membranes Using Solid-State NMR Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, marzec 2008. http://dx.doi.org/10.21236/ada482328.
Pełny tekst źródła