Gotowa bibliografia na temat „Dynamic encoding”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Dynamic encoding”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Dynamic encoding"
Megason, Sean G. "Dynamic Encoding in the Notch Pathway". Developmental Cell 44, nr 4 (luty 2018): 411–12. http://dx.doi.org/10.1016/j.devcel.2018.02.006.
Pełny tekst źródłaSchraudolph, Nicol N., i Richard K. Belew. "Dynamic Parameter Encoding for genetic algorithms". Machine Learning 9, nr 1 (czerwiec 1992): 9–21. http://dx.doi.org/10.1007/bf00993252.
Pełny tekst źródłaFRANK, SCHMIEDLE, GU¨NTHER WOLFANG i DRECHSLER R. "Dynamic Re-Encoding During MDD Minimization". Multiple-Valued Logic 8, nr 5-6 (1.01.2002): 625–43. http://dx.doi.org/10.1080/10236620215303.
Pełny tekst źródłaPyles, J. A., i M. J. Tarr. "Neural mechanisms of dynamic object encoding". Journal of Vision 13, nr 9 (25.07.2013): 492. http://dx.doi.org/10.1167/13.9.492.
Pełny tekst źródłaChen, Kevin S. "Optimal Population Coding for Dynamic Input by Nonequilibrium Networks". Entropy 24, nr 5 (25.04.2022): 598. http://dx.doi.org/10.3390/e24050598.
Pełny tekst źródłaChen, Kevin S. "Optimal Population Coding for Dynamic Input by Nonequilibrium Networks". Entropy 24, nr 5 (25.04.2022): 598. http://dx.doi.org/10.3390/e24050598.
Pełny tekst źródłaChen, Kevin S. "Optimal Population Coding for Dynamic Input by Nonequilibrium Networks". Entropy 24, nr 5 (25.04.2022): 598. http://dx.doi.org/10.3390/e24050598.
Pełny tekst źródłaDay, Mitchell L., Brent Doiron i John Rinzel. "Subthreshold K+ Channel Dynamics Interact With Stimulus Spectrum to Influence Temporal Coding in an Auditory Brain Stem Model". Journal of Neurophysiology 99, nr 2 (luty 2008): 534–44. http://dx.doi.org/10.1152/jn.00326.2007.
Pełny tekst źródłaPARK, Youngsu, Jong-Wook KIM, Johwan KIM i Sang Woo KIM. "New Encoding Method of Parameter for Dynamic Encoding Algorithm for Searches (DEAS)". IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E94-A, nr 9 (2011): 1804–16. http://dx.doi.org/10.1587/transfun.e94.a.1804.
Pełny tekst źródłaStaten, Henry. "Dynamic Encoding in a Simple Autogenic System". Biosemiotics 14, nr 3 (grudzień 2021): 583–87. http://dx.doi.org/10.1007/s12304-021-09465-5.
Pełny tekst źródłaRozprawy doktorskie na temat "Dynamic encoding"
Xie, Fujun. "Improving non-constant luminance color encoding efficiency for high dynamic range video applications". Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/62132.
Pełny tekst źródłaApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Al, Zadjali Hanaa. "Compressing labels of dynamic XML data using Base-9 scheme and Fibonacci encoding". Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/18571/.
Pełny tekst źródłaKim, Dan. "Dynamic Encoding Is Neither Necessary Nor Sufficient For Logarithmic Compression In Number Estimation". The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1437057644.
Pełny tekst źródłaFröhlich, Jan [Verfasser], i Daniel [Akademischer Betreuer] Weiskopf. "Encoding high dynamic range and wide color gamut imagery / Jan Fröhlich ; Betreuer: Daniel Weiskopf". Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2017. http://d-nb.info/1153769905/34.
Pełny tekst źródłaQiu, Peiwen. "Variability in the Pinna Motions of Hipposiderid Bats, Hipposideros Pratti". Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/96483.
Pełny tekst źródłaMaster of Science
Sensors have been developed for a long time, and they can be used to detect the environments and then deliver the required sensing information. There are many different types of sensors, such as vision-based sensors (infrared camera and laser scanner) and sound-based sensors (sonar and radar). Ultrasonic transducers are one of the sound-based sensors, and they are more stable and reliable in environments where smoke or steam is present. Similar to human-made ultrasonic transducers, bats have developed highly capable biosonar systems that consist of one ultrasonic emitter (nose or mouth) and two ultrasonic receivers (ears), and these biosonar systems enable them to fly and hunt in cluttered environments. Some bats, e.g. rhinolophid and hipposiderid bats, have dynamic noseleaves (elaborate baffle shapes surrounding the nostrils) and pinna (outer ear), and these could enhance the sensing abilities of bats. Hence, the purpose of this thesis has been to investigate this variability to improve the human-made sensors by focusing on the dynamic pinna of the bats. It has been shown that bats have two distinct categories of pinna motions: rigid motions which change only the orientation of the pinna, and non-rigid motions which change also the shape of the pinna. However, the variability within the rigid and non-rigid pinna motions has received little attention. Therefore, the present work has investigated the variability in the rigid pinna motions and in the non-rigid pinna motions. Landmark points were placed on the pinna of certain bats and the pinna motions were tracked by high-speed video cameras. The rigid pinna motions exhibit a large continuous variation in where the pinna is orientated during rotation. Distributions of clusters of the landmarks on the pinna have shown that the non-rigid pinna motions fall into at least two subgroups. The acoustic impacts of the rigid pinna motions have been studied by a biomimetic pinna which reproduced the observed range of the rigid pinna motions. Ultrasonic signals mimicking the bats were emitted to be received by the biomimetic pinna. Based on these signals, it has been shown that different rotation axes and even small changes can provide over 50% new sensory information. These findings give engineers a potential way to improve the human-made sensors.
Chen, Yingwen. "XQuery Query Processing in Relational Systems". Thesis, University of Waterloo, 2004. http://hdl.handle.net/10012/1201.
Pełny tekst źródłaCreutzig, Felix. "Sufficient encoding of dynamical systems". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2008. http://dx.doi.org/10.18452/15817.
Pełny tekst źródłaThis thesis consists of two parts. In the first part, I investigate the coding of communication signal in a bursting interneuron in the auditory system of the grasshopper Chorthippus biguttulus. The intra-burst spike count codes one temporal feature of the communication signal - pause duration. I show that this code can be understood by a model of parallel fast excitation and slow inhibition. Furthermore, temporal integration of the spike train of this bursting interneuron results in a desirable time-scale invariant read-out of the communication signal. This mechanism can be integrated into a more comprehensive model that can explain behavioural response of grasshoppers. In the second part of this thesis, I combine concepts from information theory and linear system theory to operationalize the notion of ''predictive information''. In the simple case of predicting the next time-step of a signal in an information-theoretic optimal sense, I obtain a description by eigenvectors that are identical to another established algorith, the so-called ''Slow Feature Analysis''. In the general case I optimize a dynamical system such that the predictive information in the input past about the output future is optimalle compressed into the state space. Thereby, I obtain an information-theoretically optimal characterization of reduced system, based on the eigenvectors of the conditional covariance matrix between input past and output future.
Santos-Pata, Diogo. "The Dynamics of hippocampal encoding: beyond the spatial metaphor". Doctoral thesis, Universitat Pompeu Fabra, 2018. http://hdl.handle.net/10803/587163.
Pełny tekst źródłaTots els animals del nostre planeta passegen mentre busquen alguna cosa. Ja sigui per trobar menjar, parella o un lloc per viure, la nave- gacio` `es un dels comportaments cognitius més realitzats en la natura. No obstant, la nostra comprensió de com el cervell és capaç de resoldre aquest senzill problema − moure’s d’un punt a un altre − encara és incompleta. La descomposició de la navegació en diferents components cognitius revela la complexitat d’aquest comportament. Per assolir un objectiu, hom ha de primer conèixer la seva posició, llavors estimar la posició destí, seguidament identificar una ruta o camí fins a aquesta i, finalment, orquestrar un conjunt d’accions motores que portin fins a la posició desitjada. L’àmplia recerca de l’hipocamp en mamífers ha revelat el seu paper fonamental en la navegació espacial, la memòria i l’aprenentatge. Tot i això, els mecanismes de codificació de la memòria espacial, la representació episódica i els seus homólegs encara no s’han pogut entendre completament. Tanmateix, encara no sabem si els mecanismes involucrats en la representació espacial també escalen des d’un domini purament espacial a la representació de conceptes, com ara les necessitats cognitives d’una tasca. En aquesta tesi presentem un conjunt d’estudis centrats en la representació espacial i cognitiva en el cervell d’insectes i mamífers. Mostrem que el problema de la representació espacial requereix de solucions amb múltiples nivells treballant simultàniament: des dels mecanismes neuronals biofísics fins als aspectes conductuals de la navegació. Per últim, a partir d’estudis fisiológics del lobul temporal mitjà de l’ésser humà, proposem que els mecanismes involucrats en la representació espacial també s’extenen a representacions cognitives d’alt nivell, suggerint que l’hipocamp s’encarrega de la informació independentment de la seva dimensió.
Yarger, Alexandra Mead. "Inertial encoding mechanisms and flight dynamics of dipteran insects". Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1585688085360805.
Pełny tekst źródłaBorresen, Jon Carl. "Dynamical encoding in systems of globally coupled oscillators". Thesis, University of Exeter, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.421576.
Pełny tekst źródłaKsiążki na temat "Dynamic encoding"
G, Seetharaman, Feng G. L i United States. National Aeronautics and Space Administration., red. Communications and information research: Improved space link performance via concatenated forward error correction coding : program report on NASA subcontract. [Washington, DC: National Aeronautics and Space Administration, 1996.
Znajdź pełny tekst źródłaVancura, Bert. Hippocampal Interneuron Dynamics Supporting Memory Encoding and Consolidation. [New York, N.Y.?]: [publisher not identified], 2022.
Znajdź pełny tekst źródłaWiertlewski, Michaël. Reproduction of Tactual Textures: Transducers, Mechanics and Signal Encoding. London: Springer London, 2013.
Znajdź pełny tekst źródłaCavanagh, Patrick, Lorella Battelli i Alex Holcombe. Dynamic Attention. Redaktorzy Anna C. (Kia) Nobre i Sabine Kastner. Oxford University Press, 2014. http://dx.doi.org/10.1093/oxfordhb/9780199675111.013.016.
Pełny tekst źródłaWolff, Phillip. Force Dynamics. Redaktor Michael R. Waldmann. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199399550.013.13.
Pełny tekst źródłaMcCarroll, Christopher. Being Faithful to the Past. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190674267.003.0002.
Pełny tekst źródłaQuadt, Lisa, Hugo D. Critchley i Sarah N. Garfinkel. Interoception and emotion: Shared mechanisms and clinical implications. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198811930.003.0007.
Pełny tekst źródłaCraik, Fergus I. M. Remembering. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192895226.001.0001.
Pełny tekst źródłaWiertlewski, Michaël. Reproduction of Tactual Textures: Transducers, Mechanics and Signal Encoding. Springer, 2015.
Znajdź pełny tekst źródłaEliasmith, Chris. Neurocomputational Models: Theory, Application, Philosophical Consequences. Redaktor John Bickle. Oxford University Press, 2009. http://dx.doi.org/10.1093/oxfordhb/9780195304787.003.0014.
Pełny tekst źródłaCzęści książek na temat "Dynamic encoding"
Dietsch, Daniel, Marius Greitschus, Matthias Heizmann, Jochen Hoenicke, Alexander Nutz, Andreas Podelski, Christian Schilling i Tanja Schindler. "Ultimate Taipan with Dynamic Block Encoding". W Tools and Algorithms for the Construction and Analysis of Systems, 452–56. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89963-3_31.
Pełny tekst źródłaPrestwich, Steven. "Full Dynamic Substitutability by SAT Encoding". W Principles and Practice of Constraint Programming – CP 2004, 512–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30201-8_38.
Pełny tekst źródłaFall, Andrew. "Sparse term encoding for dynamic taxonomies". W Lecture Notes in Computer Science, 277–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/3-540-61534-2_18.
Pełny tekst źródłaSurynek, Pavel, i Roman Barták. "Encoding HTN Planning as a Dynamic CSP". W Principles and Practice of Constraint Programming - CP 2005, 868. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11564751_106.
Pełny tekst źródłaOmar, Mehnuma Tabassum, i K. M. Azharul Hasan. "An Efficient Encoding Scheme for Dynamic Multidimensional Datasets". W Lecture Notes in Computer Science, 517–23. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69900-4_66.
Pełny tekst źródłaSu, Bing, Jiahuan Zhou, Xiaoqing Ding, Hao Wang i Ying Wu. "Hierarchical Dynamic Parsing and Encoding for Action Recognition". W Computer Vision – ECCV 2016, 202–17. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46493-0_13.
Pełny tekst źródłaPaxian, Tobias, Sven Reimer i Bernd Becker. "Dynamic Polynomial Watchdog Encoding for Solving Weighted MaxSAT". W Theory and Applications of Satisfiability Testing – SAT 2018, 37–53. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94144-8_3.
Pełny tekst źródłaFoo, Norman, Dongmo Zhang, Yan Zhang, Samir Chopra i Bao Quoc Vo. "Encoding Solutions of the Frame Problem in Dynamic Logic". W Logic Programming and Nonmotonic Reasoning, 240–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45402-0_18.
Pełny tekst źródłaMuzaffar, Shahzad, i Ibrahim M. Elfadel. "Pulsed Decimal Encoding for IoT Single-Channel Dynamic Signaling". W VLSI-SoC: Opportunities and Challenges Beyond the Internet of Things, 112–32. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15663-3_6.
Pełny tekst źródłaDai, Qiang, Xi Cheng i Li Zhang. "Multi-spectral Dynamic Feature Encoding Network for Image Demoiréing". W Lecture Notes in Computer Science, 151–62. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-15937-4_13.
Pełny tekst źródłaStreszczenia konferencji na temat "Dynamic encoding"
Huo, Niu, i Dong Shen. "Dynamic Encoding-Decoding-Based Quantized Iterative Learning Control". W 2024 IEEE 13th Data Driven Control and Learning Systems Conference (DDCLS), 777–82. IEEE, 2024. http://dx.doi.org/10.1109/ddcls61622.2024.10606894.
Pełny tekst źródłaXue, Tianbao, i Quanxiang Lan. "Enhanced image encryption technique utilizing chaotic mapping and dynamic DNA encoding". W International Conference on Algorithms, High Performance Computing and Artificial Intelligence, redaktorzy Pavel Loskot i Liang Hu, 33. SPIE, 2024. http://dx.doi.org/10.1117/12.3051381.
Pełny tekst źródłaYu, Francis T. S., A. W. Mayers i X. X. Chen. "Two-step pseudocolor encoding". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.wk6.
Pełny tekst źródłaLi, Jianjun, Zhenjiang Wang, Chenggang Wu, Wei-Chung Hsu i Di Xu. "Dynamic and Adaptive Calling Context Encoding". W Annual IEEE/ACM International Symposium. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2581122.2544167.
Pełny tekst źródłaLi, Jianjun, Zhenjiang Wang, Chenggang Wu, Wei-Chung Hsu i Di Xu. "Dynamic and Adaptive Calling Context Encoding". W CGO '14: 12th Annual IEEE/ACM International Symposium on Code Generation and Optimization. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2544137.2544167.
Pełny tekst źródłaXiaodong Gu i Hongjiang Zhang. "Implementing dynamic GOP in video encoding". W 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698). IEEE, 2003. http://dx.doi.org/10.1109/icme.2003.1220926.
Pełny tekst źródłaKitbumrung, Phattarin, i Benchaphon Limthanmaphon. "ECC dynamic point encoding on mobile device". W 2015 Second International Conference on Computing Technology and Information Management (ICCTIM). IEEE, 2015. http://dx.doi.org/10.1109/icctim.2015.7224590.
Pełny tekst źródłaShu, Fangxun, i Xuelin Yang. "Lossless Image Compression Using Dynamic Block Encoding". W 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP). IEEE, 2020. http://dx.doi.org/10.1109/icsip49896.2020.9339275.
Pełny tekst źródłaWard, Greg, i Maryann Simmons. "Subband encoding of high dynamic range imagery". W ACM SIGGRAPH 2004 Sketches. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1186223.1186309.
Pełny tekst źródłaMantiuk, Rafal, Grzegorz Krawczyk, Karol Myszkowski i Hans-Peter Seidel. "Perception-motivated high dynamic range video encoding". W ACM SIGGRAPH 2004 Papers. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1186562.1015794.
Pełny tekst źródłaRaporty organizacyjne na temat "Dynamic encoding"
Lemon, T., i S. Cheshire. Encoding Long Options in the Dynamic Host Configuration Protocol (DHCPv4). RFC Editor, listopad 2002. http://dx.doi.org/10.17487/rfc3396.
Pełny tekst źródłaStapp, M., T. Lemon i A. Gustafsson. A DNS Resource Record (RR) for Encoding Dynamic Host Configuration Protocol (DHCP) Information (DHCID RR). RFC Editor, październik 2006. http://dx.doi.org/10.17487/rfc4701.
Pełny tekst źródłade Abreu, Jonas, i Mariana Cunha e Melo. Extending Pix: An approach to offline Dynamic QR Code generation. Center for Technology and Public Interest, SL, kwiecień 2023. http://dx.doi.org/10.59262/9qu6ex.
Pełny tekst źródłaPichersky, Eran, Alexander Vainstein i Natalia Dudareva. Scent biosynthesis in petunia flowers under normal and adverse environmental conditions. United States Department of Agriculture, styczeń 2014. http://dx.doi.org/10.32747/2014.7699859.bard.
Pełny tekst źródłaSternberg, Saul. The Dynamics of Visual Representation, Attention, Encoding, and Retrieval Processes. Fort Belvoir, VA: Defense Technical Information Center, październik 1991. http://dx.doi.org/10.21236/ada243031.
Pełny tekst źródła