Artykuły w czasopismach na temat „Dynamic coacervates”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Dynamic coacervates”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Furlani, Franco, Pietro Parisse i Pasquale Sacco. "On the Formation and Stability of Chitosan/Hyaluronan-Based Complex Coacervates". Molecules 25, nr 5 (27.02.2020): 1071. http://dx.doi.org/10.3390/molecules25051071.
Pełny tekst źródłaZheng, Jiabao, Qing Gao, Ge Ge, Jihong Wu, Chuan-he Tang, Mouming Zhao i Weizheng Sun. "Dynamic equilibrium of β-conglycinin/lysozyme heteroprotein complex coacervates". Food Hydrocolloids 124 (marzec 2022): 107339. http://dx.doi.org/10.1016/j.foodhyd.2021.107339.
Pełny tekst źródłaVecchies, Federica, Pasquale Sacco, Eleonora Marsich, Giuseppe Cinelli, Francesco Lopez i Ivan Donati. "Binary Solutions of Hyaluronan and Lactose-Modified Chitosan: The Influence of Experimental Variables in Assembling Complex Coacervates". Polymers 12, nr 4 (13.04.2020): 897. http://dx.doi.org/10.3390/polym12040897.
Pełny tekst źródłaAponte-Rivera, Christian, i Michael Rubinstein. "Dynamic Coupling in Unentangled Liquid Coacervates Formed by Oppositely Charged Polyelectrolytes". Macromolecules 54, nr 4 (29.01.2021): 1783–800. http://dx.doi.org/10.1021/acs.macromol.0c01393.
Pełny tekst źródłaMohanty, B., V. K. Aswal, P. S. Goyal i H. B. Bohidar. "Small-angle neutron and dynamic light scattering study of gelatin coacervates". Pramana 63, nr 2 (sierpień 2004): 271–76. http://dx.doi.org/10.1007/bf02704984.
Pełny tekst źródłaLin, Ya’nan, Hairong Jing, Zhijun Liu, Jiaxin Chen i Dehai Liang. "Dynamic Behavior of Complex Coacervates with Internal Lipid Vesicles under Nonequilibrium Conditions". Langmuir 36, nr 7 (31.01.2020): 1709–17. http://dx.doi.org/10.1021/acs.langmuir.9b03561.
Pełny tekst źródłaWang, Lechuan, Mengzhuo Liu, Panpan Guo, Huajiang Zhang, Longwei Jiang, Ning Xia, Li Zheng, Qian Cui i Shihui Hua. "Understanding the structure, interfacial properties, and digestion fate of high internal phase Pickering emulsions stabilized by food-grade coacervates: Tracing the dynamic transition from coacervates to complexes". Food Chemistry 414 (lipiec 2023): 135718. http://dx.doi.org/10.1016/j.foodchem.2023.135718.
Pełny tekst źródłaFurlani, Franco, Ivan Donati, Eleonora Marsich i Pasquale Sacco. "Characterization of Chitosan/Hyaluronan Complex Coacervates Assembled by Varying Polymers Weight Ratio and Chitosan Physical-Chemical Composition". Colloids and Interfaces 4, nr 1 (2.03.2020): 12. http://dx.doi.org/10.3390/colloids4010012.
Pełny tekst źródłaBohidar, H., P. L. Dubin, P. R. Majhi, C. Tribet i W. Jaeger. "Effects of Protein−Polyelectrolyte Affinity and Polyelectrolyte Molecular Weight on Dynamic Properties of Bovine Serum Albumin−Poly(diallyldimethylammonium chloride) Coacervates". Biomacromolecules 6, nr 3 (maj 2005): 1573–85. http://dx.doi.org/10.1021/bm049174p.
Pełny tekst źródłaDanielsen, Scott P. O., James McCarty, Joan-Emma Shea, Kris T. Delaney i Glenn H. Fredrickson. "Molecular design of self-coacervation phenomena in block polyampholytes". Proceedings of the National Academy of Sciences 116, nr 17 (4.04.2019): 8224–32. http://dx.doi.org/10.1073/pnas.1900435116.
Pełny tekst źródłaBos, Inge, Eline Brink, Lucile Michels i Joris Sprakel. "DNA dynamics in complex coacervate droplets and micelles". Soft Matter 18, nr 10 (2022): 2012–27. http://dx.doi.org/10.1039/d1sm01787j.
Pełny tekst źródłaTom, Jenna K. A., i Ashok A. Deniz. "Complex dynamics of multicomponent biological coacervates". Current Opinion in Colloid & Interface Science 56 (grudzień 2021): 101488. http://dx.doi.org/10.1016/j.cocis.2021.101488.
Pełny tekst źródłaPeixoto, Paulo D. S., Guilherme M. Tavares, Thomas Croguennec, Aurélie Nicolas, Pascaline Hamon, Claire Roiland i Saïd Bouhallab. "Structure and Dynamics of Heteroprotein Coacervates". Langmuir 32, nr 31 (26.07.2016): 7821–28. http://dx.doi.org/10.1021/acs.langmuir.6b01015.
Pełny tekst źródłaWang, Shengbo, Changlong Chen, Bor-Jier Shiau i Jeffrey H. Harwell. "Counterion binding on coacervation of dioctyl sulfosuccinate in aqueous sodium chloride". Soft Matter 15, nr 18 (2019): 3771–78. http://dx.doi.org/10.1039/c8sm02531b.
Pełny tekst źródłaKausik, Ravinath, Aasheesh Srivastava, Peter A. Korevaar, Galen Stucky, J. Herbert Waite i Songi Han. "Local Water Dynamics in Coacervated Polyelectrolytes Monitored through Dynamic Nuclear Polarization-Enhanced1H NMR". Macromolecules 42, nr 19 (13.10.2009): 7404–12. http://dx.doi.org/10.1021/ma901137g.
Pełny tekst źródłaKausik, Ravinath, Aasheesh Srivastava, Peter A. Korevaar, Galen Stucky, J. Herbert Waite i Songi Han. "Local Water Dynamics in Coacervated Polyelectrolytes Monitored through Dynamic Nuclear Polarization-Enhanced1H NMR". Macromolecules 43, nr 6 (23.03.2010): 3122. http://dx.doi.org/10.1021/ma902825f.
Pełny tekst źródłaArmstrong, James P. K., Sam N. Olof, Monika D. Jakimowicz, Anthony P. Hollander, Stephen Mann, Sean A. Davis, Mervyn J. Miles, Avinash J. Patil i Adam W. Perriman. "Cell paintballing using optically targeted coacervate microdroplets". Chemical Science 6, nr 11 (2015): 6106–11. http://dx.doi.org/10.1039/c5sc02266e.
Pełny tekst źródłaKaroui, Hedi, Marianne J. Seck i Nicolas Martin. "Self-programmed enzyme phase separation and multiphase coacervate droplet organization". Chemical Science 12, nr 8 (2021): 2794–802. http://dx.doi.org/10.1039/d0sc06418a.
Pełny tekst źródłaLambden, Edward, i Martin B. Ulmschneider. "Coarse grained antimicrobial coacervated nanoparticle dynamics". Biophysical Journal 122, nr 3 (luty 2023): 371a. http://dx.doi.org/10.1016/j.bpj.2022.11.2044.
Pełny tekst źródłaKayitmazer, A. Basak, Himadri B. Bohidar, Kevin W. Mattison, Arijit Bose, Jayashri Sarkar, Akihito Hashidzume, Paul S. Russo, Werner Jaeger i Paul L. Dubin. "Mesophase separation and probe dynamics in protein–polyelectrolyte coacervates". Soft Matter 3, nr 8 (2007): 1064–76. http://dx.doi.org/10.1039/b701334e.
Pełny tekst źródłaYu, Boyuan, Phillip M. Rauscher, Nicholas E. Jackson, Artem M. Rumyantsev i Juan J. de Pablo. "Crossover from Rouse to Reptation Dynamics in Salt-Free Polyelectrolyte Complex Coacervates". ACS Macro Letters 9, nr 9 (26.08.2020): 1318–24. http://dx.doi.org/10.1021/acsmacrolett.0c00522.
Pełny tekst źródłaFighir, Daniela, Carmen Paduraru, Ramona Ciobanu, Florin Bucatariu, Oana Plavan, Andreea Gherghel, George Barjoveanu, Marcela Mihai i Carmen Teodosiu. "Removal of Diclofenac and Heavy Metal Ions from Aqueous Media Using Composite Sorbents in Dynamic Conditions". Nanomaterials 14, nr 1 (21.12.2023): 33. http://dx.doi.org/10.3390/nano14010033.
Pełny tekst źródłaOrtony, Julia H., Dong Soo Hwang, John M. Franck, J. Herbert Waite i Songi Han. "Asymmetric Collapse in Biomimetic Complex Coacervates Revealed by Local Polymer and Water Dynamics". Biomacromolecules 14, nr 5 (19.04.2013): 1395–402. http://dx.doi.org/10.1021/bm4000579.
Pełny tekst źródłaReichheld, Sean E., Lisa D. Muiznieks, Fred W. Keeley i Simon Sharpe. "Direct observation of structure and dynamics during phase separation of an elastomeric protein". Proceedings of the National Academy of Sciences 114, nr 22 (15.05.2017): E4408—E4415. http://dx.doi.org/10.1073/pnas.1701877114.
Pełny tekst źródłaArfin, Najmul, Avinash Chand Yadav i H. B. Bohidar. "Sub-diffusion and trapped dynamics of neutral and charged probes in DNA-protein coacervates". AIP Advances 3, nr 11 (listopad 2013): 112108. http://dx.doi.org/10.1063/1.4830281.
Pełny tekst źródłaWee, Wen Ann, Hiroshi Sugiyama i Soyoung Park. "Photoswitchable single-stranded DNA-peptide coacervate formation as a dynamic system for reaction control". iScience 24, nr 12 (grudzień 2021): 103455. http://dx.doi.org/10.1016/j.isci.2021.103455.
Pełny tekst źródłaKim, Jung-Min, Tae-Young Heo i Soo-Hyung Choi. "Structure and Relaxation Dynamics for Complex Coacervate Hydrogels Formed by ABA Triblock Copolymers". Macromolecules 53, nr 21 (1.10.2020): 9234–43. http://dx.doi.org/10.1021/acs.macromol.0c01600.
Pełny tekst źródłaAmali, Arlin Jose, Shashi Singh, Nandini Rangaraj, Digambara Patra i Rohit Kumar Rana. "Poly(l-Lysine)–pyranine-3 coacervate mediated nanoparticle-assembly: fabrication of dynamic pH-responsive containers". Chem. Commun. 48, nr 6 (2012): 856–58. http://dx.doi.org/10.1039/c1cc15209b.
Pełny tekst źródłaLi, Nan K., Yuxin Xie i Yaroslava G. Yingling. "Insights into Structure and Aggregation Behavior of Elastin-like Polypeptide Coacervates: All-Atom Molecular Dynamics Simulations". Journal of Physical Chemistry B 125, nr 30 (21.07.2021): 8627–35. http://dx.doi.org/10.1021/acs.jpcb.1c02822.
Pełny tekst źródłaSpruijt, Evan, Frans A. M. Leermakers, Remco Fokkink, Ralf Schweins, Ad A. van Well, Martien A. Cohen Stuart i Jasper van der Gucht. "Structure and Dynamics of Polyelectrolyte Complex Coacervates Studied by Scattering of Neutrons, X-rays, and Light". Macromolecules 46, nr 11 (31.05.2013): 4596–605. http://dx.doi.org/10.1021/ma400132s.
Pełny tekst źródłaLappan, Uwe, Brigitte Wiesner i Ulrich Scheler. "Segmental Dynamics of Poly(acrylic acid) in Polyelectrolyte Complex Coacervates Studied by Spin-Label EPR Spectroscopy". Macromolecules 49, nr 22 (3.11.2016): 8616–21. http://dx.doi.org/10.1021/acs.macromol.6b01863.
Pełny tekst źródłaNolles, Antsje, Ellard Hooiveld, Adrie H. Westphal, Willem J. H. van Berkel, J. Mieke Kleijn i Jan Willem Borst. "FRET Reveals the Formation and Exchange Dynamics of Protein-Containing Complex Coacervate Core Micelles". Langmuir 34, nr 40 (13.09.2018): 12083–92. http://dx.doi.org/10.1021/acs.langmuir.8b01272.
Pełny tekst źródłaGibson, Iain, Arash Momeni i Mark Filiaggi. "Minocycline-loaded calcium polyphosphate glass microspheres as a potential drug-delivery agent for the treatment of periodontitis". Journal of Applied Biomaterials & Functional Materials 17, nr 3 (lipiec 2019): 228080001986363. http://dx.doi.org/10.1177/2280800019863637.
Pełny tekst źródłaZheng, Jiabao, Qing Gao, Ge Ge, Jihong Wu, Chuan-he Tang, Mouming Zhao i Weizheng Sun. "Heteroprotein Complex Coacervate Based on β-Conglycinin and Lysozyme: Dynamic Protein Exchange, Thermodynamic Mechanism, and Lysozyme Activity". Journal of Agricultural and Food Chemistry 69, nr 28 (9.07.2021): 7948–59. http://dx.doi.org/10.1021/acs.jafc.1c02204.
Pełny tekst źródłaAnvari, Mohammad, i Donghwa Chung. "Dynamic rheological and structural characterization of fish gelatin – Gum arabic coacervate gels cross-linked by tannic acid". Food Hydrocolloids 60 (październik 2016): 516–24. http://dx.doi.org/10.1016/j.foodhyd.2016.04.028.
Pełny tekst źródłaLappan, Uwe, i Ulrich Scheler. "Influence of the Nature of the Ion Pairs on the Segmental Dynamics in Polyelectrolyte Complex Coacervate Phases". Macromolecules 50, nr 21 (24.10.2017): 8631–36. http://dx.doi.org/10.1021/acs.macromol.7b01858.
Pełny tekst źródłaLiu, Wei, Jie Deng, Siyu Song, Soumya Sethi i Andreas Walther. "A facile DNA coacervate platform for engineering wetting, engulfment, fusion and transient behavior". Communications Chemistry 7, nr 1 (1.05.2024). http://dx.doi.org/10.1038/s42004-024-01185-4.
Pełny tekst źródłaAppelhans, Dietmar, Yang Zhou, Kehu Zhang, Silvia Moreno, Achim Temme i Brigitte Voit. "Continuous Transformation from Membrane‐less Coacervates to Membranized Coacervates and Giant Vesicles: toward Multicompartmental Protocells with Complex (Membrane) Architectures". Angewandte Chemie, 7.06.2024. http://dx.doi.org/10.1002/ange.202407472.
Pełny tekst źródłaAppelhans, Dietmar, Yang Zhou, Kehu Zhang, Silvia Moreno, Achim Temme i Brigitte Voit. "Continuous Transformation from Membrane‐less Coacervates to Membranized Coacervates and Giant Vesicles: toward Multicompartmental Protocells with Complex (Membrane) Architectures". Angewandte Chemie International Edition, 7.06.2024. http://dx.doi.org/10.1002/anie.202407472.
Pełny tekst źródłaKluczka, Eugénie, Valentin Rinaldo, Angélique Coutable-Pennarun, Claire Stines-Chaumeil, J. L. Ross Anderson i Nicolas Martin. "Enhanced Catalytic Activity of a de novo Enzyme in a Coacervate Phase". ChemCatChem, 8.05.2024. http://dx.doi.org/10.1002/cctc.202400558.
Pełny tekst źródłaWang, Jiahua, Manzar Abbas, Yu Huang, Junyou Wang i Yuehua Li. "Redox-responsive peptide-based complex coacervates as delivery vehicles with controlled release of proteinous drugs". Communications Chemistry 6, nr 1 (7.11.2023). http://dx.doi.org/10.1038/s42004-023-01044-8.
Pełny tekst źródłaChen, Hongfei, Yishu Bao, Xiaojing Li, Fangke Chen, Ryohichi Sugimura, Xiangze Zeng i Jiang Xia. "Cell Surface Engineering by Phase‐Separated Coacervates for Antibody Display and Targeted Cancer Cell Therapy". Angewandte Chemie International Edition, 5.08.2024. http://dx.doi.org/10.1002/anie.202410566.
Pełny tekst źródłaChen, Hongfei, Yishu Bao, Xiaojing Li, Fangke Chen, Ryohichi Sugimura, Xiangze Zeng i Jiang Xia. "Cell Surface Engineering by Phase‐Separated Coacervates for Antibody Display and Targeted Cancer Cell Therapy". Angewandte Chemie, 5.08.2024. http://dx.doi.org/10.1002/ange.202410566.
Pełny tekst źródłaBlanco‐López, Marcos, Alejandro Marcos‐García, Álvaro González‐Garcinuño, Antonio Tabernero i Eva M. Martín del Valle. "Exploring the effect of experimental conditions on the synthesis and stability of alginate–gelatin coacervates". Polymers for Advanced Technologies 35, nr 8 (sierpień 2024). http://dx.doi.org/10.1002/pat.6554.
Pełny tekst źródłaChoi, Hyunsuk, Yuri Hong, Saeed Najafi, Sun Young Kim, Joan‐Emma Shea, Dong Soo Hwang i Yoo Seong Choi. "Spontaneous Transition of Spherical Coacervate to Vesicle‐Like Compartment". Advanced Science, 8.12.2023. http://dx.doi.org/10.1002/advs.202305978.
Pełny tekst źródłaNair, Karthika S., Sreelakshmi Radhakrishnan i Harsha Bajaj. "Dynamic Control of Functional Coacervates in Synthetic Cells". ACS Synthetic Biology, 19.06.2023. http://dx.doi.org/10.1021/acssynbio.3c00249.
Pełny tekst źródłaSpäth, Fabian, Anton S. Maier, Michele Stasi, Alexander M. Bergmann, Kerstin Halama, Monika Wenisch, Bernhard Rieger i Job Boekhoven. "The Role of Chemically Innocent Polyanions in Active, Chemically Fueled Complex Coacervates". Angewandte Chemie International Edition, 7.08.2023. http://dx.doi.org/10.1002/anie.202309318.
Pełny tekst źródłaSpäth, Fabian, Anton S. Maier, Michele Stasi, Alexander M. Bergmann, Kerstin Halama, Monika Wenisch, Bernhard Rieger i Job Boekhoven. "The Role of Chemically Innocent Polyanions in Active, Chemically Fueled Complex Coacervates". Angewandte Chemie, 7.08.2023. http://dx.doi.org/10.1002/ange.202309318.
Pełny tekst źródłaKishimura, Akihiro, Biplab K C, Teruki Nii, Takeshi Mori i Yoshiki Katayama. "Dynamic frustrated charge hotspots created by charge density modulation sequester globular proteins into complex coacervates". Chemical Science, 2023. http://dx.doi.org/10.1039/d3sc00993a.
Pełny tekst źródłaArdestani, Faezeh, Ali Haghighi Asl i Ali Rafe. "Characterization of caseinate-pectin complex coacervates as a carrier for delivery and controlled-release of saffron extract". Chemical and Biological Technologies in Agriculture 11, nr 1 (21.08.2024). http://dx.doi.org/10.1186/s40538-024-00647-0.
Pełny tekst źródła