Spis treści
Gotowa bibliografia na temat „Dynamic coacervates”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Dynamic coacervates”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Dynamic coacervates"
Furlani, Franco, Pietro Parisse i Pasquale Sacco. "On the Formation and Stability of Chitosan/Hyaluronan-Based Complex Coacervates". Molecules 25, nr 5 (27.02.2020): 1071. http://dx.doi.org/10.3390/molecules25051071.
Pełny tekst źródłaZheng, Jiabao, Qing Gao, Ge Ge, Jihong Wu, Chuan-he Tang, Mouming Zhao i Weizheng Sun. "Dynamic equilibrium of β-conglycinin/lysozyme heteroprotein complex coacervates". Food Hydrocolloids 124 (marzec 2022): 107339. http://dx.doi.org/10.1016/j.foodhyd.2021.107339.
Pełny tekst źródłaVecchies, Federica, Pasquale Sacco, Eleonora Marsich, Giuseppe Cinelli, Francesco Lopez i Ivan Donati. "Binary Solutions of Hyaluronan and Lactose-Modified Chitosan: The Influence of Experimental Variables in Assembling Complex Coacervates". Polymers 12, nr 4 (13.04.2020): 897. http://dx.doi.org/10.3390/polym12040897.
Pełny tekst źródłaAponte-Rivera, Christian, i Michael Rubinstein. "Dynamic Coupling in Unentangled Liquid Coacervates Formed by Oppositely Charged Polyelectrolytes". Macromolecules 54, nr 4 (29.01.2021): 1783–800. http://dx.doi.org/10.1021/acs.macromol.0c01393.
Pełny tekst źródłaMohanty, B., V. K. Aswal, P. S. Goyal i H. B. Bohidar. "Small-angle neutron and dynamic light scattering study of gelatin coacervates". Pramana 63, nr 2 (sierpień 2004): 271–76. http://dx.doi.org/10.1007/bf02704984.
Pełny tekst źródłaLin, Ya’nan, Hairong Jing, Zhijun Liu, Jiaxin Chen i Dehai Liang. "Dynamic Behavior of Complex Coacervates with Internal Lipid Vesicles under Nonequilibrium Conditions". Langmuir 36, nr 7 (31.01.2020): 1709–17. http://dx.doi.org/10.1021/acs.langmuir.9b03561.
Pełny tekst źródłaWang, Lechuan, Mengzhuo Liu, Panpan Guo, Huajiang Zhang, Longwei Jiang, Ning Xia, Li Zheng, Qian Cui i Shihui Hua. "Understanding the structure, interfacial properties, and digestion fate of high internal phase Pickering emulsions stabilized by food-grade coacervates: Tracing the dynamic transition from coacervates to complexes". Food Chemistry 414 (lipiec 2023): 135718. http://dx.doi.org/10.1016/j.foodchem.2023.135718.
Pełny tekst źródłaFurlani, Franco, Ivan Donati, Eleonora Marsich i Pasquale Sacco. "Characterization of Chitosan/Hyaluronan Complex Coacervates Assembled by Varying Polymers Weight Ratio and Chitosan Physical-Chemical Composition". Colloids and Interfaces 4, nr 1 (2.03.2020): 12. http://dx.doi.org/10.3390/colloids4010012.
Pełny tekst źródłaBohidar, H., P. L. Dubin, P. R. Majhi, C. Tribet i W. Jaeger. "Effects of Protein−Polyelectrolyte Affinity and Polyelectrolyte Molecular Weight on Dynamic Properties of Bovine Serum Albumin−Poly(diallyldimethylammonium chloride) Coacervates". Biomacromolecules 6, nr 3 (maj 2005): 1573–85. http://dx.doi.org/10.1021/bm049174p.
Pełny tekst źródłaDanielsen, Scott P. O., James McCarty, Joan-Emma Shea, Kris T. Delaney i Glenn H. Fredrickson. "Molecular design of self-coacervation phenomena in block polyampholytes". Proceedings of the National Academy of Sciences 116, nr 17 (4.04.2019): 8224–32. http://dx.doi.org/10.1073/pnas.1900435116.
Pełny tekst źródłaRozprawy doktorskie na temat "Dynamic coacervates"
Lin, Zi. "Dynamic behavior of light-responsive coacervates in microfluidic droplets". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0191.
Pełny tekst źródłaLiving cells are dynamic compartmentalized systems that operate under non-equilibrium conditions. Emulating such dynamic compartmentalization in artificial systems is gaining attention in soft matter and bottom-up synthetic biology. Liquid-liquid phase separation (LLPS) is particularly key to produce dynamic compartments in biology. This phenomenon underlies the formation of biomolecular condensates in cells and has been hypothesized to play a role in the emergence of protocells at the origins of Life. In vitro, coacervate microdroplets assembled from oppositely charged polyions in water are used to emulate these bio-inspired LLPS processes. Coacervation has been extensively studied at thermodynamic equilibrium, but experimental investigations of dynamic coacervates remain scarce. Given its spatiotemporal resolution, light is particularly interesting to trigger dynamic behaviors in coacervate droplets. The recent design of light-responsive coacervates based on azobenzene photoswitches has opened avenues for dynamically controlling the dissolution and formation of coacervates with light. The dynamics of these processes are yet poorly understood. The main objective of this thesis is to investigate the dynamics of light-actuated DNA/azobenzene coacervate decay, growth and deformations using droplet-based microfluidics. After characterizing the azobenzene photoisomerisation kinetics, we produce photoswitchable coacervates within water-in-oil droplets using microfluidics. We study the relationship between coacervate size, azobenzene concentration and isomerization to build the phase diagram of DNA/azobenzene coacervation. We then investigate the kinetics of coacervate dissolution and reformation under UV and visible light, respectively, at varying coacervate sizes and light intensities to decipher the mechanism of the two processes. Ultimately, we demonstrate complex non-equilibrium coacervate deformations under optimal co-illumination conditions
Części książek na temat "Dynamic coacervates"
Reber, Arthur S., František Baluška i William B. Miller. "The Structural and Bioelectrical Basis of Cells". W The Sentient Cell, 67–76. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/oso/9780198873211.003.0005.
Pełny tekst źródła