Gotowa bibliografia na temat „Duplication complète de génome”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Duplication complète de génome”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Duplication complète de génome"

1

CHARDON, P. "Le polymorphisme du complexe majeur d’histocompatibilité". INRAE Productions Animales 13, HS (22.06.2020): 63–67. http://dx.doi.org/10.20870/productions-animales.2000.13.hs.3812.

Pełny tekst źródła
Streszczenie:
Le complexe majeur d’histocompatibilité est une région chromosomique riche en locus qui témoigne de l’évolution des génomes. Des duplications et réarrangements de cinq exons ancestraux ont donné naissance, chez les vertébrés, à plusieurs dizaines de gènes, dont les gènes d’histocompatibilité, et ont favorisé l’apparition de nouvelles fonctions biologiques comme la réponse immunitaire adaptative. Après l’émergence des mammifères, les gènes d’histocompatibilité ont continué à évoluer et certains ont acquis une fonction spécifique. Les gènes d’histocompatibilité sont caractérisés par un polymorphisme exceptionnel résultant de mécanismes actifs de génération de la diversité. Les multiples copies des gènes constituent un réservoir de séquences favorisant la création de nouveaux allèles. La variabilité est aussi entretenue par une transmission des haplotypes qui favorise les hétérozygotes.
Style APA, Harvard, Vancouver, ISO itp.
2

Poulet-Benedetti, Jérémy, Anne-Laure Valton i Marie-Noëlle Prioleau. "G-quadruplex : acteurs majeurs de la duplication du génome humain". médecine/sciences 33, nr 12 (grudzień 2017): 1063–70. http://dx.doi.org/10.1051/medsci/20173312013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Enesco, Hildegard E. "Genetic Control of the Aging Process: A Review and Interpretation". Canadian Journal on Aging / La Revue canadienne du vieillissement 15, nr 1 (1996): 16–30. http://dx.doi.org/10.1017/s0714980800013258.

Pełny tekst źródła
Streszczenie:
RÉSUMÉLe processus de vieillissement est sous contrôle génétique. Le point de vue traditionnel, dérivé de la biologie évolutive, est que le vieillissement est un trait polygénique, contrôlé par un grand nombre de gènes, chacun avec un effet additif. Un autre point de vue est développé ici, en ajoutant qu'il y a un nombre limité de gènes importants dans le contrôle du vieillissement. Ces derniers peuvent inclure les gènes protecteurs qui assurent l'exactitude de la synthèse de protéines et aussi les gènes qui servent à activer ou à retarder le processus de vieillissement. On continue à développer la technologie génétique afin de faire la carte complète du génome humain. Ces percées offrent la possibilité de comprendre les mécanismes génétiques du vieillissement et même d'envisager la thérapie génétique pour les maladies associées au vieillissement.
Style APA, Harvard, Vancouver, ISO itp.
4

Roest-Crollius, H. "Des clusters de gènes HOX surnuméraires révèlent une duplication du génome chez les poissons." médecine/sciences 15, nr 3 (1999): 411. http://dx.doi.org/10.4267/10608/1356.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Leroy, Camille, Ferechte Encha-Razavi, Marie-Laure Maurin, Charlotte Mechler, Marina Kuleva, Tania Attié-Bitach, Valérie Malan i Serge Romana. "Duplication 8p11,23p11.21 impliquant le gène FGFR1 chez un fœtus présentant une agénésie complète du corps calleux par défaut de commissuration". Morphologie 101, nr 335 (grudzień 2017): 250. http://dx.doi.org/10.1016/j.morpho.2017.07.027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

MULSANT, P. "Glossaire général". INRAE Productions Animales 24, nr 4 (8.09.2011): 405–8. http://dx.doi.org/10.20870/productions-animales.2011.24.4.3273.

Pełny tekst źródła
Streszczenie:
Allèle : une des formes alternatives d'un locus. Dans une cellule diploïde, il y a deux allèles pour chaque locus (un allèle transmis par chaque parent), qui peuvent être identiques. Dans une population, on peut avoir plusieurs allèles pour un locus.Annotation structurale : repérage des coordonnées des diverses structures dans le génome, telles que les gènes.Annotation fonctionnelle : renseignements sur les fonctions des séquences, le plus souvent pour les gènes.BAC : Bacterial Artificial Chromosome. Vecteur de clonage permettant l’obtention de clones bactériens contenant un grand fragment d’ADN génomique (taille > 100 kb*). Les BAC assemblés en contigs* sont à la base des cartes physiques du génome.Carte cytogénétique : carte des chromosomes. Réalisée par localisation visuelle (FISH*) au microscope de fragments d’ADN sur les chromosomes au stade métaphase de la mitose.Carte d’hybrides irradiés : réalisée en testant par PCR la présence ou l’absence de fragments d’ADN dans une collection de clones d’hybrides irradiés (RH*). Deux fragments d’ADN sont proches sur le génome s’ils sont trouvés fréquemment dans les mêmes clones.Carte génétique : obtenue par l’étude de la ségrégation dans des familles ou des populations, de marqueurs polymorphes, soit moléculaires, soit phénotypiques, deux séquences étant d’autant plus proches qu’elles sont souvent transmises ensemble lors de la méiose.Clonage positionnel : stratégie visant à identifier un gène responsable de l’expression d’un phénotype en utilisant des informations de position sur le génome.Contig : ensemble de clones (le plus souvent des BAC*) ou de lectures de séquence ordonnés grâce à des informations sur leur parties chevauchantes.Cosmide : vecteur de clonage permettant l’obtention de clones bactériens contenant des fragments d’ADN génomique de taille avoisinant les 50 kb*.CNV : Copy Number Variation ; polymorphisme du génome correspondant à la variation du nombre de copies d’une séquence, pouvant dans certains cas contenir un ou plusieurs gènes.Déséquilibre gamétique : pour deux loci quelconques, c'est le fait que la fréquence des haplotypes* estimée pour tous les gamètes est différente de celle attendue à partir du produit des fréquences alléliques de chaque locus. Synonyme : déséquilibre de liaison. Contraire de : équilibre gamétique.Dominance : qualificatif de l’effet d'un allèle, dont une copie suffit à l'expression du phénotype* approprié. L’allèle A est dominant sur l’allèle a si l’hétérozygote* Aa a le même phénotype* que l’homozygote AA.EST : Expressed Sequence Tag : séquences étiquettes (partielles) de transcrit, obtenues par séquençage aléatoire d’ARN.Evaluation génomique : évaluation de la valeur génétique d’individus d’après leurs génotypes pour un ensemble de loci distribués sur le génome, d’après des équations établies à partir des performances d’individus de référencephénotypés et génotypés.Expression génique : études visant à estimer le niveau de production (expression) des gènes en fonction d’états physiologiques ou de tissus différents.Exon : fraction de la partie codante d’un gène eucaryote. Les gènes des organismes eucaryotes sont le plus souvent fractionnés en plusieurs séquences d’ADN dans le génome, les exons, séparés entre eux par d’autres séquences (introns*).FISH : Fluorescent In Situ Hybridisation. Hybridation de sondes d’ADN marquées à l’aide d’un fluorochrome, sur des chromosomes au stade métaphase de la mitose. Permet la réalisation de la carte cytogénétique.Fingerprinting : technique permettant d’estimer très grossièrement la similarité entre des séquences d’ADN sans les séquencer, par la comparaison des longueurs de bandes produites par des enzymes de restriction coupant l’ADN à des sites précis.Fosmide : vecteur de clonage permettant l’obtention de clones bactériens contenant des fragment d’ADN génomique de taille déterminée et égale à 40 kb*.FPC : FingerPrint Contig* ; contig* de clones (généralement des BAC*) ordonnés par la technique du fingerprinting, afin d’obtenir une carte physique du génome.Génotype 1 : constitution génétique d'un individu. 2. Combinaison allélique* à un locus particulier, ex: Aa ou aa.Haplotype : combinaison allélique spécifique pour des loci appartenant à un fragment de chromosome défini.Héritabilité au sens strict : proportion de la variance phénotypique due à la variabilité des valeurs génétiques = proportion de la variance phénotypique due à la variance génétique additive.Hétérozygote : individu ayant des allèles non identiques pour un locus* particulier ou pour plusieurs loci. Cette condition définit l’ «hétérozygotie». Contraire de: homozygote.Homologues : séquences similaires en raison d’une origine évolutive commune.Hybride irradié : cellule hybride obtenue par fusion entre cellules hôte d’une espèce et donneuse d’une autre espèce, contenant une fraction aléatoire du génome de l’espèce donneuse, après cassures par irradiation, reconstitution aléatoire de chromosomes ou insertion dans des chromosomes de la cellule hôte et rétention partielle. Deux séquences proches sur le génome sont en probabilité dans les mêmes clones RH*, tandis que deux séquences distantes ont une probabilité faible d’être conservées ensemble.IBD : pour identity by descent. Identité entre deux chromosomes (ou parties de chromosomes), liée à leur descendance d’un même chromosome ancestral.Indel : Insertion – deletion ; polymorphisme de présence ou absence d’un ou plusieurs nucléotides.Intron : séquence non-codante dans les gènes, séparant les exons, qui codent pour une protéine.Kb : kilobase ; séquence de mille paires de bases (pb*).Locus (pl. : loci) : Site sur un chromosome. Par extension, emplacement d’un gène ou d’un marqueur génétique sur un chromosome.Marqueur génétique : séquence d'ADN dont le polymorphisme est employé pour identifier un emplacement particulier (locus) sur un chromosome particulier.Mate-pair : séquences appariées (1 à 10 kb* de distance), produites en circularisant les fragments d’ADN, puis par séquençage à travers le point de jointure.Mb : mégabase ; séquence d’un million de paires de bases (pb*) de longueur.Orthologues : séquences homologues* entre deux espèces.Paired-end : séquences appariées produites par la lecture des deux extrémités de courts fragments d’ADN (moins de 500 pb*) dans le cas des nouvelles technologies de séquençage.Paralogues : séquences homologues* résultat de la duplication d’une séquence ancestrale dans le génome. Il s’agit de deux (ou plus) séquences similaires par homologie dans un même génome.Pb : paire de base ; unité de séquence d’ADN, représentée par une base et sa complémentaire-inverse sur l’autre brin.Phénotype : caractère observable d'un individu résultant des effets conjugués du génotype et du milieu.Phylogénomique : utilise les méthodes de la génomique et de la phylogénie. Par la comparaison de génomes entiers, permet de mettre en évidence des pertes et gains de gènes dans les génomes, ainsi que leur variabilité moléculaire, afin (entre autres buts) d’aider à prédire leur fonctions.Plasmide : vecteur de clonage permettant l’obtention de clones bactériens contenant des fragment d’ADN génomique de taille allant de 500 pb* à 10 kb* environ.Polymorphisme d'ADN : existence de deux ou de plusieurs allèles* alternatifs à un locus.Puce à ADN ou puce pangénomique : Système permettant pour un individu le génotypage simultané de très nombreux marqueurs génétiques (de quelques milliers à quelques centaines de milliers).QTL : abréviation de locus à effets quantitatifs (de l’anglais Quantitative Trait Locus).Récessivité : qualificatif de l’effet d'un allèle, où l'homozygotie* est nécessaire pour l'expression du phénotype* approprié. opposé de : dominance*.RH : Radiation Hybrid (hybride irradié*)Sanger (méthode de) : méthode de séquençage publiée en 1977 (Sanger et al 1977) et encore utilisée de nos jours avec les séquenceurs à électrophorèse capillaire.Scaffold : ensemble de contigs* de séquence reliés entre eux par des informations apportées par des lectures appariées (mate-pairs* ou paired-ends*).Sélection assistée par marqueurs (abréviation : SAM) : utilisation d’un jeu restreint de marqueurs de l'ADN pour améliorer la réponse à la sélection dans une population : les marqueurs sont choisis comme étroitement liés à un ou plusieurs loci cibles, qui sont souvent des loci à effets quantitatifs ou QTL*.SNP : polymorphisme d'un seul nucléotide à une position particulière de la séquence d’ADN (abréviation de l’anglais Single Nucleotide Polymorphism).Supercontig : nom alternatif pour les scaffolds*.WGS : Whole Genome Shotgun ; production de lectures de séquence d’un génome entier de manière aléatoire.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Duplication complète de génome"

1

Parey, Elise. "Évolution des gènes et génomes après duplication complète du génome chez les poissons téléostéens". Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLE008.

Pełny tekst źródła
Streszczenie:
Les duplications complètes de génome sont des événements majeurs dans l’histoire évolutive des espèces. Elles produisent des copies surnuméraires de gènes qui peuvent acquérir de nouvelles fonctions et ainsi contribuer aux processus d’adaptation et de diversification. Deux duplications complètes de génome ont eu lieu dans la lignée précédant l’ancêtre des Vertébrés, suivies d’une troisième à la base des poissons téléostéens (datée à 320 millions d’années). L’impressionnante diversité du clade téléostéen, représentant plus de la moitié des espèces de Vertébrés actuelles, permet d’explorer un large éventail de questions fonctionnelles et évolutives. De fait, le séquençage récent et en cours de nombreuses espèces de poissons promet de complémenter le modèle bien établi du poisson-zèbre. Néanmoins, leur événement partagé de duplication complète représente un défi pour l’analyse et la comparaison des génomes de poissons. En effet, suite à la duplication, de nombreux gènes demeurent en deux copies dans les génomes, ce qui complexifie la caractérisation des relations d’homologies entre gènes de différentes espèces. Afin de résoudre ce problème, j’ai développé une nouvelle méthodologie spécifique à la reconstruction d’arbres de gènes dans le contexte de duplications complètes de génomes, nommée SCORPiOs (Syntenyguided CORrection of Paralogies and Orthologies). L’innovation notable derrière SCORPiOs est l’intégration d’information provenant de l’organisation des gènes dans les génomes (synténie) afin de compléter les méthodes basées sur l’évolution moléculaire des séquences. Je présente comment l’application de cette nouvelle méthode à différents jeux de génomes de poissons améliore notre compréhension de l’évolution et de la structure des génomes de téléostéens. Dans un premier temps, je montre que SCORPiOs met en évidence la contribution des gènes dupliqués aux innovations évolutives des téléostéens. L’identification précise de gènes orthologues et paralogues m’a également permis d’établir la première cartographie à grande échelle des régions dupliquées entre génomes de poissons. Ce second résultat représente une nouvelle ressource qui devrait faciliter l’extrapolation d’annotations fonctionnelles entre espèces modèles et non-modèles. Enfin, je démontre comment l’analyse fine des désaccords de prédictions basées sur la synténie et la séquence permet de préciser les patrons spatio-temporels du retour à l’état diploïde après la duplication complète. Mon travail propose un cadre pour faciliter les analyses comparatives chez les poissons téléostéens et améliore nos connaissances concernant l’évolution des génomes après duplication complète
Whole-genome duplications are major events in the evolutionary history of species. They produce additional gene copies that can acquire new functions and thus contribute to adaptation and diversification processes. Two rounds of whole genome duplications occurred in the lineage leading to the Vertebrate ancestor, followed by a subsequent one at the stem of the teleost fish clade (dated 320 million years ago). The impressive diversity of the teleost clade, accounting for over half of extant vertebrate species, allows us to address a vast panel of functional and evolutionary questions. As such, the recent and on-going sequencing of many fish species promises to neatly complement the well-established zebrafish model. However, their shared whole genome duplication represents an additional layer of complexity that has to be accounted for when comparing fish genomes. Indeed, many genes still remain in two copies after the duplication, which renders the identification of homologous genes across species extremely complex. To tackle this challenge, I have developed a novel method, named SCORPiOs (Synteny-guided CORrection of Paralogies and Orthologies), which reconstructs more accurate phylogenetic gene trees in the context of whole genome duplications. The major innovation behind SCORPiOs is that it integrates information from the genomic organisation of genes (synteny) to complement classical sequence-based methods. I present how the application of SCORPiOs to various fish genomes datasets enhances our understanding of fish genome structure and evolution. First, I show that SCORPiOs links duplicate gene retention to evolutionary novelties in the teleost clade. Further, the precise identification of orthologous and paralogous genes allowed me to establish the first large-scale cartography of WGD-duplicated regions across fish genomes. This second result represents a novel resource that should facilitate the transfer of functional annotations between model and non-model fish species. Last, I demonstrate how the analysis of discordances between sequence and synteny predictions sheds light on the spatio-temporal pattern of rediploidization following the duplication event. My work provides a framework that facilitates comparative analyses across teleost fish genomes and reveals insights into the evolution of genomes following whole genome duplication
Style APA, Harvard, Vancouver, ISO itp.
2

Berthelot, Camille. "Etude des mécanismes évolutifs perturbant l’organisation des gènes dans les génomes de vertébrés". Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112192/document.

Pełny tekst źródła
Streszczenie:
Les phénomènes évolutifs qui perturbent l’organisation des gènes dans les génomes eucaryotes sont de deux types : les changements dans l’ordre des gènes, ou réarrangements, et les modifications du contenu en gènes du génome, par duplications, délétions ou gains de gènes. Ces processus sont mal connus, tant au niveau de leurs mécanismes d’apparition que de leur impact fonctionnel et sélectif. Ce travail de thèse s’articule autour de deux projets. Le premier s’intéresse à la distribution des points de cassure de réarrangements évolutifs entre un génome ancestral et ses descendants modernes. Cette distribution a été modélisée en fonction des caractéristiques locales du génome pour mettre en évidence quels facteurs influencent la probabilité de cassure. Nos résultats montrent que la distribution des cassures peut s’expliquer simplement comme une fonction de la longueur des espaces intergéniques, fonction qui est cependant non-linéaire contrairement aux attentes sous un régime aléatoire classique. La répartition des points de cassure dans les génomes semble principalement liée à des propriétés de structure, et n’est que peu soumise à des contraintes de sélection. Elle pourrait être liée à la structure chromatinienne du génome. Le second projet s’inscrit dans le cadre du séquençage du génome du poisson zèbre, et fournit un aperçu global de l’organisation de ce génome. Les génomes de poissons téléostéens sont anciennement dupliqués : l’analyse est axée sur les conséquences de cette duplication. Les résultats montrent que le génome du poisson zèbre présente une organisation assez typique d’un génome téléostéen. Les gènes retenus en deux copies après la duplication du génome appartiennent à des catégories fonctionnelles particulières, et sont biaisés vers des gènes déjà conservés après les duplications 1R et 2R ayant eu lieu au début de l’histoire des vertébrés
Evolutionary processes disrupting the gene organisation in eukaryotic genomes belong to two categories: changes in the order of the genes, known as rearrangements, and changes in the content of the genome by gene duplications, deletions and gains. The mechanisms through which these events arise, and their functional and selective impact on genomes, are poorly understood. This thesis covers two different projects. Firstly, we investigated the distribution of rearrangement breakpoints between an ancestral genome and its modern descendants. This distribution was modelled according to local genomic characteristics to highlight factors influencing the breakage process. Our results show that the distribution of breakpoints can be simply explained as a function of intergenic spacers length, although in a non-linear fashion differing from classical random expectations. The repartition of breakpoints in genomes seems to be linked to structural properties, and is only marginally affected by selective constraints. It might in fact reflect local chromatin structure in the genome. The second project is part of the joint sequencing effort for the zebrafish genome, and provides an overview of the organisation of this genome. Teleost fish genomes are anciently duplicated: the analysis focuses on the consequences of this duplication. Results show that the zebrafish genome displays a typical teleost fish genome organisation. Genes retained in two copies after the whole genome duplication belong to specific functional categories, and are biased towards genes already conserved as duplicates after the 1R and 2R duplication events that have taken place early in vertebrate history
Style APA, Harvard, Vancouver, ISO itp.
3

Berthelot, Camille. "Etude des mécanismes évolutifs perturbant l'organisation des gènes dans les génomes de vertébrés". Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00750114.

Pełny tekst źródła
Streszczenie:
Les phénomènes évolutifs qui perturbent l'organisation des gènes dans les génomes eucaryotes sont de deux types : les changements dans l'ordre des gènes, ou réarrangements, et les modifications du contenu en gènes du génome, par duplications, délétions ou gains de gènes. Ces processus sont mal connus, tant au niveau de leurs mécanismes d'apparition que de leur impact fonctionnel et sélectif. Ce travail de thèse s'articule autour de deux projets. Le premier s'intéresse à la distribution des points de cassure de réarrangements évolutifs entre un génome ancestral et ses descendants modernes. Cette distribution a été modélisée en fonction des caractéristiques locales du génome pour mettre en évidence quels facteurs influencent la probabilité de cassure. Nos résultats montrent que la distribution des cassures peut s'expliquer simplement comme une fonction de la longueur des espaces intergéniques, fonction qui est cependant non-linéaire contrairement aux attentes sous un régime aléatoire classique. La répartition des points de cassure dans les génomes semble principalement liée à des propriétés de structure, et n'est que peu soumise à des contraintes de sélection. Elle pourrait être liée à la structure chromatinienne du génome. Le second projet s'inscrit dans le cadre du séquençage du génome du poisson zèbre, et fournit un aperçu global de l'organisation de ce génome. Les génomes de poissons téléostéens sont anciennement dupliqués : l'analyse est axée sur les conséquences de cette duplication. Les résultats montrent que le génome du poisson zèbre présente une organisation assez typique d'un génome téléostéen. Les gènes retenus en deux copies après la duplication du génome appartiennent à des catégories fonctionnelles particulières, et sont biaisés vers des gènes déjà conservés après les duplications 1R et 2R ayant eu lieu au début de l'histoire des vertébrés.
Style APA, Harvard, Vancouver, ISO itp.
4

Stein, Richard. "Evolution of biomolecular networks under gene and genome duplication". Paris 6, 2011. http://www.theses.fr/2011PA066592.

Pełny tekst źródła
Streszczenie:
Il y a 40 ans, S. Ohno proposait la duplication des gènes et du génome commme l'une des principales forces de l'évolution (par exemple par la création de nouvelles fonctions protéiques ou par événements de spéciation). Prenant l'exemple des réseaux d'interaction protéine-protéine, Evlampiev et al. Ont développé un modèle analytique de réseau d'évolution par duplication-divergence sur différentes échelles génomiques. Ce modèle fournit, par exemple, un diagramme de phase qui prédit la topologie en limite asymptotique des grands réseaux. Dans cette thèse, nous présentons une analyse du problème de l'expansion des familles de gènes et des sous-réseaux, qui constituait jusqu'ici un problème ouvert, en utilisant des compositions de suites logistiques. Nous discutons également de l'existence de variations spontanées du taux de croissance entre les familles de gènes à l'aide d'une approximation de champ moyen. Cette approche fondamentale de l'évolution des réseaux non-orientés peut, en fait, être utilisée également pour analyser l'évolution des réseaux orientés sous duplication-divergence, tels que les voies de signalisation ou les réseaux de régulation de l'expression génétique. Elle peut également être appliquée pour analyser, en particulier, les différents taux de conservation de différentes classes de gènes, soit par duplication segmentaire soit par duplication du génome entier. Avec notre travail, nous espérons améliorer la compréhension du rôle de la duplication des gènes dans l'évolution des réseaux biologiques, conduisant à des prédictions sur la conservation, la topologie du réseau et d'autres caractéristiques expérimentalement vérifiables des réseaux biologiques.
Style APA, Harvard, Vancouver, ISO itp.
5

Wincker, Patrick. "Variabilité structurale et évolution des éléments L1 de taille complète du génome de souris". Aix-Marseille 2, 1987. http://www.theses.fr/1987AIX22100.

Pełny tekst źródła
Streszczenie:
La plupart des elements repetes de la famille l1 presentent une structure tronquee au hasard en s'. Il a prealablement ete montre que plusieurs copies completes se terminaient en s' par une repetition de 208 paires de bases (pb). Ces motifs (type a) contiennent des sequences de regulation transcriptionnelle. Dix copies de taille completes provenant de mus domesticus ont ete clonees. L'etude de leur partie s' revele l'absence de motifs a dans neuf d'entre elles. Deux de ces copies, sequencees sur leur partie s', contiennent une repetition de 230 pb (type f) de sequence non apparentee au type a. Les auteurs montrent la liaison aux copies d'extremite a ou f, de site de restriction et de nucleotides variants specifiques a chaque type. Ces variations indiquent que des sous familles distinctes de l1 md proviennent de l'amplification de sequences progenetrices liees respectivement a a et a f. Enfin l'insertion d'une copie de type f est etudiee au cours de l'evolution du genre mus: cette sous-fraction s'est probablement amplifiee pendant plusieurs millions d'annees
Style APA, Harvard, Vancouver, ISO itp.
6

Voldoire, Emilien. "Duplication de génome et évolution de la famille Sox chez les poissons téléostéens". Thesis, Lyon, École normale supérieure, 2013. http://www.theses.fr/2013ENSL0875/document.

Pełny tekst źródła
Streszczenie:
Les duplications de gènes et de génome sont considérées comme des moteurs de l’évolution des génomes eucaryotes. Trois duplications de génome complet (ou polyploïdisations) sont survenues au cours de l’évolution des vertébrés, dont deux à la base des vertébrés, et une troisième chez l’ancêtre commun des poissons téléostéens. La diversité morphologique, anatomique et écologique des espèces qui partagent un ancêtre commun polyploïde chez les chordés suggère un rôle des duplications de génome dans la diversification des espèces. En particulier, les duplications de génome semblent avoir facilité l’émergence du plan d’organisation des vertébrés, et être à l’origine de la radiation évolutive survenue chez les poissons téléostéens. Cependant, la portée évolutive des duplications de génome, et notamment les deux hypothèses majeures formulées ci-Avant, restent des questions ouvertes et en grande partie non résolues. Le groupe des téléostéens, qui compte plus de la moitié des espèces vertébrés existantes et partage un ancêtre commun polyploïde, constitue un modèle pertinent pour évaluer la contribution des duplications de génome dans l’expansion des familles multigéniques chez les vertébrés, pour comprendre les mécanismes évolutifs qui façonnent l’évolution des familles de gènes, et finalement tester les hypothèses moléculaires qui peuvent relier duplication de génome et biodiversité. Ainsi, nous avons étudié l’impact de la duplication de génome survenue à la base des téléostéens sur l’évolution de la famille multigénique sox, essentielle pour le développement et l’homéostasie des vertébrés. Notre analyse du contenu et de l’organisation des gènes sox dans 15 génomes de vertébrés, dont 10 téléostéens, révèle une importante expansion de l’ensemble de la famille des gènes sox dans ce vaste groupe de vertébrés, et démontre que cette expansion est essentiellement due à la duplication de génome survenue à la base des téléostéens. Les gènes sox dupliqués par duplication de génome semblent avoir été perdus par non-Fonctionnalisation dans certaines lignées, et préservés en deux copies par sous-Fonctionnalisation et/ou néo-Fonctionnalisation dans certaines autres lignées. Notre étude indique en effet une divergence lignée-Spécifique des patrons d’expression entre les gènes sox dupliqués chez différentes espèces de téléostéens. Ainsi, l’expansion du répertoire des gènes sox à la base des téléostéens semble avoir été suivi d’une évolution lignée-Spécifique du contenu et des fonctions de la famille des gènes sox chez les poissons téléostéens. Cette étude supporte l’hypothèse d’un rôle des duplications de génome dans l’enrichissement et la diversification subséquente des répertoires de gènes du développement tels que les gènes sox, et son rôle potentiel dans la diversification des espèces vertébrés
Gene and genome duplications are major engines of eukaryotic genome evolution. Three rounds of whole genome duplication (WGD) have occurred during vertebrate evolution, two rounds at the base of the vertebrate lineage, and a third round in the common ancestor of the teleostean fish (the so-Called teleost-Specific WGD). In chordates, species that share a polyploid ancestor are characterized by a huge morphological, anatomical and ecological diversity suggesting a role of WGDs in species diversification. For instance, it is considered that these drastic genomic events provided the raw material for the emergence of the vertebrate body plan, and facilitated speciation processes during the teleost radiation. However, how WGD is related to phenotypic diversification or to major evolutionary transitions are fundamental questions that remain largely unsolved. Teleostean fish constitute more than half of all extant vertebrates and share a polyploid ancestor. Thus, they provide a relevant model to study the importance of WGDs in gene families expansion, to understand evolutionary mechanisms that drive the evolution of these families and, finally, to test molecular hypotheses that might relate WGD and biodiversity. In this project, we studied the impact of the teleost-Specific WGD on the evolution of the sox gene family which are involved in development and homeostasis in vertebrates. Our analysis of the content and the genomic organization of the sox genes in 15 vertebrate genomes, including 10 teleosts, reveals an important expansion of this family in the teleost lineage, and demonstrates that this expansion is mainly due to the teleost-Specific WGD. The duplicated sox genes seem to have been lost by non-Functionalization in certain lineages, and preserved in two copies in others by neo-Functionalization and/or sub-Functionalization. Indeed, this study indicates lineage-Specific divergence in expression patterns between duplicated sox genes in different teleostean species. Hence, the sox family expansion that occurred in the last common ancestor of teleostean fish seems to have been followed by a lineage-Specific evolution of the content and functions of the sox family in this group. Our study supports the hypothesis for a role of WGDs in the enrichment and diversification of developmental genes repertories and its potential role in species diversification in vertebrates
Style APA, Harvard, Vancouver, ISO itp.
7

Goût, Jean-François. "Les singularités du génome de la paramécie : un bon révélateur des mécanismes évolutifs à l’œuvre chez les êtres vivants". Thesis, Lyon 1, 2009. http://www.theses.fr/2009LYO10167.

Pełny tekst źródła
Streszczenie:
La publication du génome de la paramécie (Aury, 2006) a révélé une séquence atypique particulièrement intéressante pour les études de génomique évolutive. Au cours de cette thèse, j’ai mené une analyse bioinformatique détaillée de ce génome en me concentrant particulièrement sur les trois points suivants : 1) Le rôle de deux classes distinctes de petits ARN fonctionnels non codants, l’une intervenant dans les processus de régulation de l’expression des gènes tandis que l’autre participe aux réarrangements génomiques (élimination de fragments d’ADN) associés au cycle sexuel de la paramécie. 2) L’évolution des paires de gènes après une duplication globale de génome (WGD). En effet, avec une WGD relativement récente précédée de deux autres WGDs plus anciennes encore bien visibles, la paramécie est un modèle de choix pour cette étude. Nous avons pu montrer que la rétention des deux copies d’un gène après une WGD est fortement corrélée au niveau d’expression des gènes. Nous proposons un modèle basé sur les coûts et bénéfices de l’expression des gènes pour expliquer cette observation. 3) L’analyse de contraintes sélectives sur les introns pour produire des messagers détectables par le Nonsense-Mediated mRNA Decay (NMD). Ces contraintes sélectives, mises en évidence initialement chez la paramécie, se sont avérées être présentes chez tous les eucaryotes que nous avons pu analyser, ce qui nous amène à questionner l’efficacité des mécanismes d’épissage chez les eucaryotes et le rôle du NMD dans la prévention des erreurs d’épissage. L’ensemble de ces analyses a permis de mieux comprendre un certain nombre de mécanismes évolutifs universels
This work presents a detailed analysis of the paramecium genome, with focusing more precisely on the 3 following topics : 1) The role of two distinct classes of small non-coding RNAs. The first one (siRNAs) being involved in post-transcriptional gene silencing while the other (scanRNAs) plays a crucial role during the massive genomic rearrangements that occur in ciliates after sexual reproduction (Lepère et al. 2009). 2) The evolution of duplicated genes following Whole-Genome Duplications (WGDs). Indeed, the paramecium genome contains evidences for 3 successive WGDs (Aury et al. 2006), which explains why this organisms is perfectly well suited for such an analysis. We show that retention of duplicated genes is strongly correlated to their expression level and we propose a model based on cost and benefit of gene expression to explain this pattern. 3) The analysis of the extremely tiny introns in paramecium (99% of introns are less than 20-33nt in length) revealed the presence of a translational control of splicing in eukaryotes. This work suggests that splicing errors are frequent and that eukaryotic cells rely on the Nonsense-mediated mRNA Decay to detect aberrant transcripts produced by splicing errors (Jaillon et al. 2008). These analyses provide new insights on several evolutionary mechanisms that shape the genomes of eukaryotes
Style APA, Harvard, Vancouver, ISO itp.
8

Lamothe, Claudine. "Influence des complexes protéiques sur la rétention de copies de gène après une duplication de génome". Master's thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/34502.

Pełny tekst źródła
Streszczenie:
Les duplications de gènes contribuent grandement à l'augmentation de la complexité des organismes en fournissant du nouveau matériel brut sur lequel agit la sélection naturelle. De ces duplications, c’est la duplication de génome qui a l’impact le plus important dû à la quantité de gènes impliqués. Plusieurs événements de duplication de génome ont eu lieu au fil de l'évolution de nombreuses lignées d'organismes. Une grande partie des gènes dupliqués créés lors de ces événements accumuleront des mutations délétères et seront inactivés ou disparaîtront du génome complètement, mais d'autres seront retenus. La rétention de certains gènes a été liée à divers facteurs comme le dosage génique et le niveau d'expression. Ce projet se concentre sur l’impact de la participation à des complexes protéiques sur la rétention des copies créés par des événements successifs de duplication de génome chez Paramecium tetraurelia. Nous avons d’abord prédit la composition de 885 complexes protéiques à travers les relations d'orthologie avec cinq espèces modèles. Ces complexes nous ont ensuite permis de déterminer que les gènes impliqués dans ces complexes avaient des niveaux d’expression plus élevés et plus corrélés, facteurs ayant déjà été associés avec un taux de rétention plus élevé. Nous avons également décelé une plus grande rétention d’un nombre pair de copies chez les gènes participant à des complexes protéiques, observation potentiellement reliée aux propriétés structurales des complexes. Parallèlement, nous avons noté un effet similaire à la participation à des complexes protéiques chez les gènes possédant des orthologues chez toutes les espèces modèles utilisées, démontrant que cet effet de conservation pouvait s’ajouter à celui de la participation à des complexes pour augmenter le niveau d’expression des gènes impliqués et le garder plus corrélé. Ensemble, ces facteurs présentent une image complexe de facteurs interreliés qui peuvent s’additionner pour influencer le sort des copies au fil de l’évolution
Gene duplications contribute greatly to the increase in organismal complexity by providing new material for natural selection to act upon. Of these duplication events, whole-genome duplication has a major impact due to the sheer amount of gene copies produced. Several events of whole-genome duplication have occurred throughout the evolutionary history of many lineages. The greater part of the duplicated genes created during these events will accumulate deleterious mutations, become inactivated and will disappear completely from the genome, but some will be maintained over time. Several factors have been linked to the retention of certain genes such as gene dosage or the level of expression. This project focuses on the impact of participation in a protein complex on the retention of copies created during several successive events of whole-genome duplication in the ciliate Paramecium tetraurelia. First, we predicted the composition of 885 protein complexes through orthologous relationships with five model species. Those protein complexes then allowed us to determine that genes participating in those complexes had higher and more correlated expression, both factors previously linked in the literature with a higher retention rate. We also observed a greater retention of even numbers of copies for genes participating in protein complexes, observation which might be connected to structural properties of protein complexes. At the same time, we noted an effect similar to protein complex participation in genes with orthologs in all our model species used and determined that this might partially be caused by an overlap between the genes participating in protein complexes and those being conserved in all the model species However, we also showed that the effect of widespread conservation was independent of that of complex participation. Together, those factors paint a complex picture of interconnected factors that can interact to influence the fate of copies through the course of evolution.
Duplication génique
Style APA, Harvard, Vancouver, ISO itp.
9

Koszul, Romain. "Duplication de segments chromosomiques dans le génome de Saccharomyces cerevisiae : mécanismes de formation, stabilité et impact évolutif". Paris 6, 2004. http://www.theses.fr/2004PA066552.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Singh, Param Priya. "Expansion des familles de gènes impliquées dans des maladies par duplication du génome chez les premiers vertébrés". Paris 6, 2013. http://www.theses.fr/2013PA066796.

Pełny tekst źródła
Streszczenie:
L'expansion au cours de l'évolution de familles de gènes impliquées dans les cancers et d'autres maladies génétiques graves est surprenante du point de vue de la sélection naturelle. Dans cette thèse, nous avons montré que des familles de gènes sujettes à des mutations délétères dans le génome humain se sont principalement agrandies par rétention de gènes "ohnologues" issus de deux duplications globales du génome (GGD) datant de l'origine des vertébrés à mâchoires. En utilisant une méthode d'inférence avancée, nous avons aussi démontré que la rétention de nombreux ohnologues soupçonnés d'être susceptibles aux équilibres de dosage d'expression était en fait plus directement liée à leur sensibilité aux mutations délétères. Cette rétention priviligiée d'ohnologues "dangereux", définis comme sujets à des mutations délétères dominantes, semble être une conséquence des évênements de spéciation provoqués par ces GGD et la sélection de purification qui a suivi dans les espèces post-GGD. Nous avons également développé une approche quantitative pour identifier les ohnologues dans le génome des vertébrés. Ces ohnologues sont facilement accessibles à partir d'un serveur Web. Nos résultats soulignent l' importance de la sélection non adaptative induite par GGD dans l'émergence de la complexité des vertébrés, tout en rationalisant, d'un point de vue évolutif, l'extension des familles de gènes fréquemment impliquées dans les maladies génétiques et les cancers. Les ohnologues identifiés par notre approche ouvrent également la voie à de nouvelles analyses de génomique fonctionnelle distinguant l'origine des gènes dupliqués
The emergence and evolutionary expansion of gene families implicated in cancers and other severe genetic diseases is an evolutionary oddity from a natural selection perspective. In this thesis, we have shown that gene families prone to deleterious mutations in the human genome have been preferentially expanded by the retention of "ohnolog" genes from two rounds of whole-genome duplication (WGD) dating back from the onset of jawed vertebrates. Using advance inference analysis, we have further demonstrated that the retention of many ohnologs suspected to be dosage balanced is in fact indirectly mediated by their susceptibility to deleterious mutations. This enhanced retention of "dangerous" ohnologs, defined as prone to autosomal-dominant deleterious mutations, is shown to be a consequence of WGD-induced speciation and the ensuing purifying selection in post-WGD species. We have also developed an efficient approach to identify ohnologs in the vertebrate genome with high confidence. These ohnologs can be easily accessed from a web server. Our findings highlight the importance of WGD-induced non-adaptive selection for the emergence of vertebrate complexity, while rationalizing, from an evolutionary perspective, the expansion of gene families frequently implicated in genetic disorders and cancers. The high confidence ohnologs identified by our approach will also pave the way for a diverse functional genomic analyses
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii