Gotowa bibliografia na temat „Dualité de Pontryagin”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Dualité de Pontryagin”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Dualité de Pontryagin"
Lim, Johnny. "Analytic Pontryagin duality". Journal of Geometry and Physics 145 (listopad 2019): 103483. http://dx.doi.org/10.1016/j.geomphys.2019.103483.
Pełny tekst źródłaChasco, M. J., i E. Mart�n-Peinador. "Binz-Butzmann duality versus Pontryagin duality". Archiv der Mathematik 63, nr 3 (wrzesień 1994): 264–70. http://dx.doi.org/10.1007/bf01189829.
Pełny tekst źródłaBanaszczyk, Wojciech, María Jesús Chasco i Elena Martin-Peinador. "Open subgroups and Pontryagin duality". Mathematische Zeitschrift 215, nr 1 (styczeń 1994): 195–204. http://dx.doi.org/10.1007/bf02571709.
Pełny tekst źródłaChasco, M. J. "Pontryagin duality for metrizable groups". Archiv der Mathematik 70, nr 1 (1.01.1998): 22–28. http://dx.doi.org/10.1007/s000130050160.
Pełny tekst źródłaShtern, A. I. "Duality between compactness and discreteness beyond pontryagin duality". Proceedings of the Steklov Institute of Mathematics 271, nr 1 (grudzień 2010): 212–27. http://dx.doi.org/10.1134/s0081543810040164.
Pełny tekst źródłaMelnikov, Alexander. "Computable topological groups and Pontryagin duality". Transactions of the American Mathematical Society 370, nr 12 (3.05.2018): 8709–37. http://dx.doi.org/10.1090/tran/7355.
Pełny tekst źródłaHern�ndez, Salvador. "Pontryagin duality for topological Abelian groups". Mathematische Zeitschrift 238, nr 3 (1.11.2001): 493–503. http://dx.doi.org/10.1007/s002090100263.
Pełny tekst źródłaVan Daele, A., i Shuanhong Wang. "Pontryagin duality for bornological quantum hypergroups". manuscripta mathematica 131, nr 1-2 (18.11.2009): 247–63. http://dx.doi.org/10.1007/s00229-009-0318-8.
Pełny tekst źródłaHernández, Salvador, i Vladimir Uspenskij. "Pontryagin Duality for Spaces of Continuous Functions". Journal of Mathematical Analysis and Applications 242, nr 2 (luty 2000): 135–44. http://dx.doi.org/10.1006/jmaa.1999.6627.
Pełny tekst źródłaGabriyelyan, S. S. "Groups of quasi-invariance and the Pontryagin duality". Topology and its Applications 157, nr 18 (grudzień 2010): 2786–802. http://dx.doi.org/10.1016/j.topol.2010.08.018.
Pełny tekst źródłaRozprawy doktorskie na temat "Dualité de Pontryagin"
Artusa, Marco. "Sur des théorèmes de dualité pour la cohomologie condensée du groupe de Weil d'un corps p-adique". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0228.
Pełny tekst źródłaThe goal of this thesis is twofold. First, we build a topological cohomology theory for the Weil group of p-adic fields. Secondly, we use this theory to prove duality theorems for such fields, which manifest as Pontryagin duality between locally compact abelian groups. These results improve existing duality theorems and give them a topological flavour. Condensed Mathematics allow us to reach these objectives, providing a framework where it is possible to do algebra with topological objects. We define and study a cohomology theory for condensed groups and pro-condensed groups, and we apply it to the Weil group of a p-adic field, considered as a pro-condensed group. The resulting cohomology groups are proved to be locally compact abelian groups of finite ranks in some special cases. This allows us to enlarge the local Tate duality to a more general category of non-necessarily discrete coefficients, where it takes the form of a Pontryagin duality between locally compact abelian groups. In the last part of the thesis, we use the same framework to recover a Weil-version of the Tate duality with coefficients in abelian varieties and more generally in 1-motives, expressing those dualities as perfect pairings between condensed abelian groups. To do this, we associate to every algebraic group, resp. 1-motive, a condensed abelian group, resp. a complex of condensed abelian groups, with an action of the (pro-condensed) Weil group. We call this association the condensed Weil-´etale realisation. We show the existence of a condensed Poincar´e pairing for abelian varieties and we prove a condensed-Weil version of the Tate duality with coefficients in abelian varieties, which improves the correspondent result of Karpuk. Lastly, we exhibit a condensed Poincar´e pairing for 1-motives. We show that this pairing is compatible with the weight filtration and we prove a duality theorem with coefficients in 1-motives, which improves a result of Harari-Szamuely
Del, Gatto Davide. "Analisi di Fourier sui Gruppi". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18784/.
Pełny tekst źródłaChis, Cristina. "Bounded sets in topological groups". Doctoral thesis, Universitat Jaume I, 2010. http://hdl.handle.net/10803/10502.
Pełny tekst źródłaIn the second part of the paper, we apply duality methods in order to obtain estimations of the size of a local base for an important class of groups. This translation, which has been widely exhibited in the Pontryagin-van Kampen duality theory of locally compact abelian groups, is often very relevant and has been extended by many authors to more general classes of topological groups. In this work we follow basically the pattern and terminology given by Vilenkin in 1998.
Lim, Johnny. "Analytic Pontryagin Duality". Thesis, 2019. http://hdl.handle.net/2440/124554.
Pełny tekst źródłaThesis (Ph.D.) -- University of Adelaide, School of Mathematical Sciences, 2019
Černohorská, Eva. "Homotopické struktury v algebře, geometrii a matematické fyzice". Master's thesis, 2011. http://www.nusl.cz/ntk/nusl-313715.
Pełny tekst źródłaKsiążki na temat "Dualité de Pontryagin"
Außenhofer, Lydia, Dikran Dikranjan i Anna Giordano Bruno. Topological Groups and the Pontryagin-van Kampen Duality. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110654936.
Pełny tekst źródłaDikranjan, Dikran, Anna Giordano Bruno i Lydia Außenhofer. Topological Groups and the Pontryagin-Van Kampen Duality: An Introduction. de Gruyter GmbH, Walter, 2021.
Znajdź pełny tekst źródłaStralka, A., M. Mislove i K. H. Hofmann. Pontryagin Duality of Compact o-Dimensional Semilattices and Its Applications. Springer London, Limited, 2006.
Znajdź pełny tekst źródłaDikranjan, Dikran, Anna Giordano Bruno i Lydia Außenhofer. Topological Groups and the Pontryagin-Van Kampen Duality: An Introduction. de Gruyter GmbH, Walter, 2021.
Znajdź pełny tekst źródłaDikranjan, Dikran, Anna Giordano Bruno i Lydia Außenhofer. Topological Groups and the Pontryagin-Van Kampen Duality: An Introduction. de Gruyter GmbH, Walter, 2021.
Znajdź pełny tekst źródłaMorris, Sidney A. Pontryagin Duality and the Structure of Locally Compact Abelian Groups. Cambridge University Press, 2009.
Znajdź pełny tekst źródłaMorris, Sidney A. Pontryagin Duality and the Structure of Locally Compact Abelian Groups. Cambridge University Press, 2011.
Znajdź pełny tekst źródłaZhang, Xu, i Qi Lü. General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions. Springer London, Limited, 2014.
Znajdź pełny tekst źródłaGeneral Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions. Springer, 2014.
Znajdź pełny tekst źródłaCzęści książek na temat "Dualité de Pontryagin"
Banaszczyk, Wojciech. "Pontryagin duality". W Lecture Notes in Mathematics, 132–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0089152.
Pełny tekst źródłaVourdas, Apostolos. "Partial Orders and Pontryagin Duality". W Quantum Science and Technology, 7–10. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59495-8_2.
Pełny tekst źródłaJayakumar, S., S. S. Iyengar i Naveen Kumar Chaudhary. "Sensor Fusion and Pontryagin Duality". W Lecture Notes in Electrical Engineering, 123–37. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5091-1_10.
Pełny tekst źródłaLisica, Yu T. "The alexander-pontryagin duality theorem for coherent homology and cohomology with coefficients in sheaves of modules". W Lecture Notes in Mathematics, 148–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0081425.
Pełny tekst źródłaGamkrelidze, R. V. "Topological Duality Theorems". W L. S. Pontryagin Selected Works, 347–74. CRC Press, 2019. http://dx.doi.org/10.1201/9780367813758-25.
Pełny tekst źródła"13 The Pontryagin-van Kampen duality". W Topological Groups and the Pontryagin-van Kampen Duality, 201–28. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110654936-013.
Pełny tekst źródłaGamkrelidze, R. V. "The General Topological Theorem of Duality for Closed Sets *". W L. S. Pontryagin Selected Works, 137–50. CRC Press, 2019. http://dx.doi.org/10.1201/9780367813758-9.
Pełny tekst źródła"14 Applications of the duality theorem". W Topological Groups and the Pontryagin-van Kampen Duality, 229–62. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110654936-014.
Pełny tekst źródła"7 Completeness and completion". W Topological Groups and the Pontryagin-van Kampen Duality, 97–114. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110654936-007.
Pełny tekst źródła"11 The Følner theorem". W Topological Groups and the Pontryagin-van Kampen Duality, 159–86. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110654936-011.
Pełny tekst źródłaStreszczenia konferencji na temat "Dualité de Pontryagin"
Akbarov, Sergei S. "Pontryagin duality and topological algebras". W Topological Algebras, their Applications, and Related Topics. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2005. http://dx.doi.org/10.4064/bc67-0-5.
Pełny tekst źródłaGauthier, Jean Paul. "Hypoelliptic diffusion, Chu duality and human vision". W International Conference "Optimal Control and Differential Games" dedicated to the 110th anniversary of L. S. Pontryagin. Moscow: Steklov Mathematical Institute, 2018. http://dx.doi.org/10.4213/proc22841.
Pełny tekst źródła