Gotowa bibliografia na temat „Dual-Functional Radar Communication”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Dual-Functional Radar Communication”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Dual-Functional Radar Communication"

1

Liu, Fan, Longfei Zhou, Christos Masouros, Ang Li, Wu Luo i Athina Petropulu. "Toward Dual-functional Radar-Communication Systems: Optimal Waveform Design". IEEE Transactions on Signal Processing 66, nr 16 (15.08.2018): 4264–79. http://dx.doi.org/10.1109/tsp.2018.2847648.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Zhang, Zhibo, Qing Chang, Fan Liu i Shengzhi Yang. "Dual-Functional Radar-Communication Waveform Design: Interference Reduction Versus Exploitation". IEEE Communications Letters 26, nr 1 (styczeń 2022): 148–52. http://dx.doi.org/10.1109/lcomm.2021.3122980.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Valiulahi, Iman, Christos Masouros, Abdelhamid Salem i Fan Liu. "Antenna Selection for Energy-Efficient Dual-Functional Radar-Communication Systems". IEEE Wireless Communications Letters 11, nr 4 (kwiecień 2022): 741–45. http://dx.doi.org/10.1109/lwc.2022.3142043.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Liu, Fan, Christos Masouros, Tharmalingam Ratnarajah i Athina Petropulu. "On Range Sidelobe Reduction for Dual-Functional Radar-Communication Waveforms". IEEE Wireless Communications Letters 9, nr 9 (wrzesień 2020): 1572–76. http://dx.doi.org/10.1109/lwc.2020.2997959.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Shi, Shengnan, Zhaoyi Wang, Zishu He i Ziyang Cheng. "Constrained waveform design for dual-functional MIMO radar-Communication system". Signal Processing 171 (czerwiec 2020): 107530. http://dx.doi.org/10.1016/j.sigpro.2020.107530.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Li, Ting, Tian Liu, Zhangli Song, Lin Zhang i Yiming Ma. "Deep Learning-Based Multi-Feature Fusion for Communication and Radar Signal Sensing". Electronics 13, nr 10 (10.05.2024): 1872. http://dx.doi.org/10.3390/electronics13101872.

Pełny tekst źródła
Streszczenie:
Recent years witness the rapid development of communication and radar technologies, and many transmitters are equipped with both communication and radar functionalities. To keep track of the working state of a target dual-functional transmitter, it is crucial to sense the modulation mode of the emitted signals. In this paper, we propose a deep learning-based intelligent modulation sensing technique for dual-functional transmitters. Different from existing modulation sensing methods, which usually focus on communication signals, we take both communication and radar signals into consideration. Typically, the dominant features of communication signals lie in the time domain, while those of radar signals lie in both time and frequency domains. To enhance the sensing accuracy, we first exploit real and complex value convolution operations to extract both time-domain and frequency-domain features of emitted signals from the target transmitter. Then, we fuse the extracted features by assigning proper weights with the attention mechanism. Simulation results reveal that the proposed technique can improve the sensing accuracy by up to 4% on average compared with benchmarks.
Style APA, Harvard, Vancouver, ISO itp.
7

Hieu, Nguyen Quang, Dinh Thai Hoang, Nguyen Cong Luong i Dusit Niyato. "iRDRC: An Intelligent Real-Time Dual-Functional Radar-Communication System for Automotive Vehicles". IEEE Wireless Communications Letters 9, nr 12 (grudzień 2020): 2140–43. http://dx.doi.org/10.1109/lwc.2020.3014972.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Wang, Xinyi, Zesong Fei, Zhong Zheng i Jing Guo. "Joint Waveform Design and Passive Beamforming for RIS-Assisted Dual-Functional Radar-Communication System". IEEE Transactions on Vehicular Technology 70, nr 5 (maj 2021): 5131–36. http://dx.doi.org/10.1109/tvt.2021.3075497.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Zhang, Tingxiao, Yongbo Zhao, Donghe Liu i Jinli Chen. "Interference optimized dual-functional radar-communication waveform design with low PAPR and range sidelobe". Signal Processing 204 (marzec 2023): 108828. http://dx.doi.org/10.1016/j.sigpro.2022.108828.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Zhao, Yinan, Zhongqing Zhao, Fangqiu Tong, Ping Sun, Xiang Feng i Zhanfeng Zhao. "Joint Design of Transmitting Waveform and Receiving Filter via Novel Riemannian Idea for DFRC System". Remote Sensing 15, nr 14 (14.07.2023): 3548. http://dx.doi.org/10.3390/rs15143548.

Pełny tekst źródła
Streszczenie:
Recently, the problem of target detection in noisy environments for the Dual-Functional Radar Communication (DFRC) integration system has been a hot topic. In this paper, to suppress the noise and further enhance the target detection performance, a novel manifold Riemannian Improved Armijo Search Conjugate Gradient algorithm (RIASCG) framework has been proposed which jointly optimizes the integrated transmitting waveform and receiving filter. Therein, the reference waveform is first designed to achieve excellent pattern matching of radar beamforming. Furthermore, to ensure the quality of system information transmission, the energy of multi-user interference (MUI) of communication signals is incorporated as the constraint. Additionally, the typical similarity constraint is introduced to ensure the transmitting waveform with a good ambiguity function. Finally, simulation results demonstrate that the designed waveform not only enhances the system’s target detection performance in noisy environments but also achieves a relatively good multi-user communication ability when compared with other prevalent waveforms.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Dual-Functional Radar Communication"

1

Shahbazi, Arzhang. "Machine Learning Techniques for UAV-assisted Networks". Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG076.

Pełny tekst źródła
Streszczenie:
L'objectif principal de cette thèse est la modélisation, l'évaluation des performances et l'optimisation au niveau du système des réseaux cellulaires de prochaine génération équipés de drones en utilisant l'intelligence artificielle. En outre, la technologie émergente de détection et de communication intégrées est étudiée pour être appliquée aux futurs réseaux sans fil des drones. En particulier, en s'appuyant sur la technique d'apprentissage par renforcement pour contrôler les actions des drones, cette thèse développe un ensemble de nouveaux cadres d'apprentissage automatique pour incorporer des mesures de performance importantes dans l'agent, telles que le débit du système de communication et l'erreur de localisation, qui peuvent être utilisées pour l'analyse et l'optimisation au niveau du système. Plus précisément, un nouvel algorithme basé sur l'apprentissage est proposé pour maximiser le débit du système en utilisant une connaissance préalable de la probabilité de présence des utilisateurs dans un réseau. Un cadre d'apprentissage fédéré a été introduit pour trouver une planification optimale de la trajectoire en formant un agent avec un algorithme d'apprentissage profond dans différents environnements afin d'obtenir une généralisation et une convergence plus rapide. Les performances d'un drone équipé d'un système de communication radar à double fonction sont étudiées et les avantages potentiels de ces systèmes sont démontrés en optimisant conjointement le débit du système de communication et l'erreur de localisation
The main focus of this thesis is on modeling, performance evaluation and system-level optimization of next-generation cellular networks empowered by Unmanned Aerial Vehicles (UAVs) by using Machine Learning (ML). In addition, the emerging technology of Integrated Sensing and Communication is investigated for application to future UAV wireless networks. In particular, relying on Reinforcement Learning (RL) technique for controlling UAV actions, this thesis develops a set of new ML frameworks for incorporating important performance metrics in to the RL agent, such as the communication system throughput and localization error, which can be used for system-level analysis and optimization. More specifically, a new learning-based algorithms proposed to maximize the system throughput by utilizing a prior knowledge of users likelihood of presence in a grid. A Federated Learning (FL) framework introduced to find an optimal path planning through training an agent with RL algorithm in different environment settings to achieve generalization and faster convergence. The performance of UAV equipped with Dual-Functional Radar Communication (DFRC) is investigated and the potential benefits of DFRC systems are shown by jointly optimizing communication system throughput and localization error
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Dual-Functional Radar Communication"

1

Wang, Xiangrong, Xianghua Wang, Weitong Zhai i Kaiquan Cai. "Sparse Sensing for Dual-Functional Radar Communications". W Sparse Sensing and Sparsity Sensed in Multi-sensor Array Applications, 241–90. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9558-5_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Dual-Functional Radar Communication"

1

Yang, Wei-Chih, Hsin-Yuan Chang, Ronald Y. Chang i Wei-Ho Chung. "Hybrid Beamforming for Dual-Functional Radar-Communication Systems". W 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring). IEEE, 2023. http://dx.doi.org/10.1109/vtc2023-spring57618.2023.10199478.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Zeng, Junjie, Ping Chu i Bin Liao. "Hybrid Transmitter and Radar Receiver Design for OFDM Dual-Functional Radar-Communication". W 2021 CIE International Conference on Radar (Radar). IEEE, 2021. http://dx.doi.org/10.1109/radar53847.2021.10027974.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Xiao, Jun, Jianhua Tang i Jiao Chen. "Efficient Radar Detection for RIS-Aided Dual-Functional Radar-Communication System". W 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring). IEEE, 2023. http://dx.doi.org/10.1109/vtc2023-spring57618.2023.10200033.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Cheng, Ziyang, Bin Liao i Zishu He. "Hybrid Transceiver Design for Dual-Functional Radar-Communication System". W 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM). IEEE, 2020. http://dx.doi.org/10.1109/sam48682.2020.9104387.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Su, Nanchi, Fan Liu, Christos Masouros, Tharmalingam Ratnarajah i Athina Petropulu. "Secure Dual-functional Radar-Communication Transmission: Hardware-Efficient Design". W 2021 55th Asilomar Conference on Signals, Systems, and Computers. IEEE, 2021. http://dx.doi.org/10.1109/ieeeconf53345.2021.9723251.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Liu, Rang, Ming Li, Yang Liu i Qian Liu. "Symbol-Level Precoding Design for Dual-Functional Radar-Communication Systems". W ICC 2021 - IEEE International Conference on Communications. IEEE, 2021. http://dx.doi.org/10.1109/icc42927.2021.9500781.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Zhou, Longfei, Fan Liu, Chang Tian, Christos Masouros, Ang Li, Wei Jiang i Wu Luo. "Optimal Waveform Design for Dual-functional MIMO Radar-Communication Systems". W 2018 IEEE/CIC International Conference on Communications in China (ICCC). IEEE, 2018. http://dx.doi.org/10.1109/iccchina.2018.8641142.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Zhao, Yifei, Zixin Wang, Zhibin Wang, Xu Chen i Yong Zhou. "Learning to Beamform for Dual-Functional MIMO Radar-Communication Systems". W ICC 2023 - IEEE International Conference on Communications. IEEE, 2023. http://dx.doi.org/10.1109/icc45041.2023.10279159.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Zhao, Zongyao, Xinke Tang i Yuhan Dong. "Cognitive Waveform Design for Dual-functional MIMO Radar-Communication Systems". W GLOBECOM 2022 - 2022 IEEE Global Communications Conference. IEEE, 2022. http://dx.doi.org/10.1109/globecom48099.2022.10001112.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Chu, Jinjin, Rang Liu, Yang Liu, Ming Li i Qian Liu. "AN-aided Secure Beamforming Design for Dual-Functional Radar-Communication Systems". W 2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops). IEEE, 2021. http://dx.doi.org/10.1109/icccworkshops52231.2021.9538912.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii