Artykuły w czasopismach na temat „DSB substrates”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „DSB substrates”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Smith, Jason A., Laura A. Bannister, Vikram Bhattacharjee, Yibin Wang, Barbara Criscuolo Waldman i Alan S. Waldman. "Accurate Homologous Recombination Is a Prominent Double-Strand Break Repair Pathway in Mammalian Chromosomes and Is Modulated by Mismatch Repair Protein Msh2". Molecular and Cellular Biology 27, nr 22 (10.09.2007): 7816–27. http://dx.doi.org/10.1128/mcb.00455-07.
Pełny tekst źródłaAoki, Tatsuhiko, Hiroaki Kariyazaki, Koji Sueoka i Kouji Izunome. "Gettering Efficiency of Si (110)/(100) Directly Bonded Hybrid Crystal Orientation Substrates". Solid State Phenomena 156-158 (październik 2009): 369–73. http://dx.doi.org/10.4028/www.scientific.net/ssp.156-158.369.
Pełny tekst źródłaLin, Yunfu, Tamas Lukacsovich i Alan S. Waldman. "Multiple Pathways for Repair of DNA Double-Strand Breaks in Mammalian Chromosomes". Molecular and Cellular Biology 19, nr 12 (1.12.1999): 8353–60. http://dx.doi.org/10.1128/mcb.19.12.8353.
Pełny tekst źródłaKato, Tetsuji, Yuji Ohara, Takaya Ueda, Jun Kikkawa, Yoshiaki Nakamura, Akira Sakai, Osamu Nakatsuka i in. "Microscopic Structure of Directly Bonded Silicon Substrates". Key Engineering Materials 470 (luty 2011): 164–70. http://dx.doi.org/10.4028/www.scientific.net/kem.470.164.
Pełny tekst źródłaDronkert, Mies L. G., H. Berna Beverloo, Roger D. Johnson, Jan H. J. Hoeijmakers, Maria Jasin i Roland Kanaar. "Mouse RAD54 Affects DNA Double-Strand Break Repair and Sister Chromatid Exchange". Molecular and Cellular Biology 20, nr 9 (1.05.2000): 3147–56. http://dx.doi.org/10.1128/mcb.20.9.3147-3156.2000.
Pełny tekst źródłaOsman, Fekret, Elizabeth A. Fortunato i Suresh Subramani. "Double-Strand Break-Induced Mitotic Intrachromosomal Recombination in the Fission Yeast Schizosaccharomyces pombe". Genetics 142, nr 2 (1.02.1996): 341–57. http://dx.doi.org/10.1093/genetics/142.2.341.
Pełny tekst źródłaNussbaum, A., M. Shalit i A. Cohen. "Restriction-stimulated homologous recombination of plasmids by the RecE pathway of Escherichia coli." Genetics 130, nr 1 (1.01.1992): 37–49. http://dx.doi.org/10.1093/genetics/130.1.37.
Pełny tekst źródłaRattray, Alison J., Brenda K. Shafer, Carolyn B. McGill i Jeffrey N. Strathern. "The Roles of REV3 and RAD57 in Double-Strand-Break-Repair-Induced Mutagenesis of Saccharomyces cerevisiae". Genetics 162, nr 3 (1.11.2002): 1063–77. http://dx.doi.org/10.1093/genetics/162.3.1063.
Pełny tekst źródłaGonzález-Barrera, Sergio, María García-Rubio i Andrés Aguilera. "Transcription and Double-Strand Breaks Induce Similar Mitotic Recombination Events inSaccharomyces cerevisiae". Genetics 162, nr 2 (1.10.2002): 603–14. http://dx.doi.org/10.1093/genetics/162.2.603.
Pełny tekst źródłaWillers, Henning, Fen Xia i Simon N. Powell. "Recombinational DNA Repair in Cancer and Normal Cells: The Challenge of Functional Analysis". Journal of Biomedicine and Biotechnology 2, nr 2 (2002): 86–93. http://dx.doi.org/10.1155/s1110724302204027.
Pełny tekst źródłaCamargo, Edwaldo E., Maria K. Sato, Gilda M. B. Del Negro i Carlos da Silva Lacaz. "Radiometric detection of metabolic activity of Paracoccidioides brasiliensis and its susceptibility to amphotericin B and diethylstilbestrol". Revista do Instituto de Medicina Tropical de São Paulo 29, nr 5 (październik 1987): 289–94. http://dx.doi.org/10.1590/s0036-46651987000500005.
Pełny tekst źródłaKang, Jian, David Ferguson, Hoseok Song, Craig Bassing, Mark Eckersdorff, Frederick W. Alt i Yang Xu. "Functional Interaction of H2AX, NBS1, and p53 in ATM-Dependent DNA Damage Responses and Tumor Suppression". Molecular and Cellular Biology 25, nr 2 (15.01.2005): 661–70. http://dx.doi.org/10.1128/mcb.25.2.661-670.2005.
Pełny tekst źródłaSchildkraut, Ezra, Cheryl A. Miller i Jac A. Nickoloff. "Transcription of a Donor Enhances Its Use during Double-Strand Break-Induced Gene Conversion in Human Cells". Molecular and Cellular Biology 26, nr 8 (15.04.2006): 3098–105. http://dx.doi.org/10.1128/mcb.26.8.3098-3105.2006.
Pełny tekst źródłaSugawara, Neal, Grzegorz Ira i James E. Haber. "DNA Length Dependence of the Single-Strand Annealing Pathway and the Role of Saccharomyces cerevisiae RAD59 in Double-Strand Break Repair". Molecular and Cellular Biology 20, nr 14 (15.07.2000): 5300–5309. http://dx.doi.org/10.1128/mcb.20.14.5300-5309.2000.
Pełny tekst źródłaHe, Deyun, Zhen Du, Huiling Xu i Xiaoming Bao. "Chl1, an ATP-Dependent DNA Helicase, Inhibits DNA:RNA Hybrids Formation at DSB Sites to Maintain Genome Stability in S. pombe". International Journal of Molecular Sciences 23, nr 12 (14.06.2022): 6631. http://dx.doi.org/10.3390/ijms23126631.
Pełny tekst źródłaElliott, Beth, i Maria Jasin. "Repair of Double-Strand Breaks by Homologous Recombination in Mismatch Repair-Defective Mammalian Cells". Molecular and Cellular Biology 21, nr 8 (15.04.2001): 2671–82. http://dx.doi.org/10.1128/mcb.21.8.2671-2682.2001.
Pełny tekst źródłaKato, Tetsuji, Takaya Ueda, Yuji Ohara, Jun Kikkawa, Yoshiaki Nakamura, Akira Sakai, Osamu Nakatsuka i in. "Structural Change during the Formation of Directly Bonded Silicon Substrates". Key Engineering Materials 470 (luty 2011): 158–63. http://dx.doi.org/10.4028/www.scientific.net/kem.470.158.
Pełny tekst źródłaMuyrers, Joep P. P., Youming Zhang, Fraenk Buchholz i A. Francis Stewart. "RecE/RecT and Redα/Redβ initiate double-stranded break repair by specifically interacting with their respective partners". Genes & Development 14, nr 15 (1.08.2000): 1971–82. http://dx.doi.org/10.1101/gad.14.15.1971.
Pełny tekst źródłaAkyüz, Nuray, Gisa S. Boehden, Silke Süsse, Andreas Rimek, Ute Preuss, Karl-Heinz Scheidtmann i Lisa Wiesmüller. "DNA Substrate Dependence of p53-Mediated Regulation of Double-Strand Break Repair". Molecular and Cellular Biology 22, nr 17 (1.09.2002): 6306–17. http://dx.doi.org/10.1128/mcb.22.17.6306-6317.2002.
Pełny tekst źródłaClikeman, Jennifer A., Sarah L. Wheeler i Jac A. Nickoloff. "Efficient Incorporation of Large (>2 kb) Heterologies Into Heteroduplex DNA: Pms1/Msh2-Dependent and -Independent Large Loop Mismatch Repair in Saccharomyces cerevisiae". Genetics 157, nr 4 (1.04.2001): 1481–91. http://dx.doi.org/10.1093/genetics/157.4.1481.
Pełny tekst źródłaTorrecilla, Ignacio, Judith Oehler i Kristijan Ramadan. "The role of ubiquitin-dependent segregase p97 (VCP or Cdc48) in chromatin dynamics after DNA double strand breaks". Philosophical Transactions of the Royal Society B: Biological Sciences 372, nr 1731 (28.08.2017): 20160282. http://dx.doi.org/10.1098/rstb.2016.0282.
Pełny tekst źródłaLlorente, Bertrand, i Lorraine S. Symington. "The Mre11 Nuclease Is Not Required for 5′ to 3′ Resection at Multiple HO-Induced Double-Strand Breaks". Molecular and Cellular Biology 24, nr 21 (1.11.2004): 9682–94. http://dx.doi.org/10.1128/mcb.24.21.9682-9694.2004.
Pełny tekst źródłaItokawa, Hiroshi, Akiko Nomachi, Nobuaki Yasutake, Tatsuya Ishida, Takashi Fukushima, Hideaki Harakawa, Yoshimasa Kawase, Atsushi Azuma i Ichiro Mizushima. "Pattern Dependence of Epitaxial-Realignment in Direct Silicon Bonded (DSB) Substrates with Hybrid Crystal Orientation". ECS Transactions 13, nr 1 (18.12.2019): 321–28. http://dx.doi.org/10.1149/1.2911513.
Pełny tekst źródłaMeyer, Damon, Becky Xu Hua Fu i Wolf-Dietrich Heyer. "DNA polymerases δ and λ cooperate in repairing double-strand breaks by microhomology-mediated end-joining in Saccharomyces cerevisiae". Proceedings of the National Academy of Sciences 112, nr 50 (25.11.2015): E6907—E6916. http://dx.doi.org/10.1073/pnas.1507833112.
Pełny tekst źródłaMosbech, Anna, Claudia Lukas, Simon Bekker-Jensen i Niels Mailand. "The Deubiquitylating Enzyme USP44 Counteracts the DNA Double-strand Break Response Mediated by the RNF8 and RNF168 Ubiquitin Ligases". Journal of Biological Chemistry 288, nr 23 (24.04.2013): 16579–87. http://dx.doi.org/10.1074/jbc.m113.459917.
Pełny tekst źródłaCampbell, Amy E., Catarina Ferraz Franco, Ling-I. Su, Emma K. Corbin, Simon Perkins, Anton Kalyuzhnyy, Andrew R. Jones, Philip J. Brownridge, Neil D. Perkins i Claire E. Eyers. "Temporal modulation of the NF-κB RelA network in response to different types of DNA damage". Biochemical Journal 478, nr 3 (10.02.2021): 533–51. http://dx.doi.org/10.1042/bcj20200627.
Pełny tekst źródłaChoi, Jae-Yeon, Raymond Black, HeeJung Lee, James Di Giovanni, Robert C. Murphy, Choukri Ben Mamoun i Dennis R. Voelker. "An improved and highly selective fluorescence assay for measuring phosphatidylserine decarboxylase activity". Journal of Biological Chemistry 295, nr 27 (19.05.2020): 9211–22. http://dx.doi.org/10.1074/jbc.ra120.013421.
Pełny tekst źródłaJessulat, Matthew, Ramy H. Malty, Diem-Hang Nguyen-Tran, Viktor Deineko, Hiroyuki Aoki, James Vlasblom, Katayoun Omidi i in. "Spindle Checkpoint Factors Bub1 and Bub2 Promote DNA Double-Strand Break Repair by Nonhomologous End Joining". Molecular and Cellular Biology 35, nr 14 (11.05.2015): 2448–63. http://dx.doi.org/10.1128/mcb.00007-15.
Pełny tekst źródłaTadi, Satish Kumar, Robin Sebastian, Sumedha Dahal, Ravi K. Babu, Bibha Choudhary i Sathees C. Raghavan. "Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions". Molecular Biology of the Cell 27, nr 2 (15.01.2016): 223–35. http://dx.doi.org/10.1091/mbc.e15-05-0260.
Pełny tekst źródłaMcMurry, M. T., C. Hernandez-Munain, P. Lauzurica i M. S. Krangel. "Enhancer control of local accessibility to V(D)J recombinase." Molecular and Cellular Biology 17, nr 8 (sierpień 1997): 4553–61. http://dx.doi.org/10.1128/mcb.17.8.4553.
Pełny tekst źródłaStephanou, Nicolas C., Feng Gao, Paola Bongiorno, Sabine Ehrt, Dirk Schnappinger, Stewart Shuman i Michael S. Glickman. "Mycobacterial Nonhomologous End Joining Mediates Mutagenic Repair of Chromosomal Double-Strand DNA Breaks". Journal of Bacteriology 189, nr 14 (11.05.2007): 5237–46. http://dx.doi.org/10.1128/jb.00332-07.
Pełny tekst źródłaMiller, Elizabeth M., Heather L. Hough, Jennifer W. Cho i Jac A. Nickoloff. "Mismatch Repair by Efficient Nick-Directed, and Less Efficient Mismatch-Specific, Mechanisms in Homologous Recombination Intermediates in Chinese Hamster Ovary Cells". Genetics 147, nr 2 (1.10.1997): 743–53. http://dx.doi.org/10.1093/genetics/147.2.743.
Pełny tekst źródłaKarakaidos, Panagiotis, Christina Kryou, Nikiana Simigdala, Apostolos Klinakis i Ioanna Zergioti. "Laser Bioprinting of Cells Using UV and Visible Wavelengths: A Comparative DNA Damage Study". Bioengineering 9, nr 8 (9.08.2022): 378. http://dx.doi.org/10.3390/bioengineering9080378.
Pełny tekst źródłaLi, Fang. "Abstract 6214: FANCA promotes transcription-coupled homologous recombination by catalyzing R-loops formation". Cancer Research 83, nr 7_Supplement (4.04.2023): 6214. http://dx.doi.org/10.1158/1538-7445.am2023-6214.
Pełny tekst źródłaDegorre, Charlotte M., Steven Lohard i Philip J. Tofilon. "Abstract 2406: Targeting prmt5 inhibits DNA repair and enhances the radiosensitivity of GBM cells". Cancer Research 83, nr 7_Supplement (4.04.2023): 2406. http://dx.doi.org/10.1158/1538-7445.am2023-2406.
Pełny tekst źródłaPrado, F., i A. Aguilera. "Role of reciprocal exchange, one-ended invasion crossover and single-strand annealing on inverted and direct repeat recombination in yeast: different requirements for the RAD1, RAD10, and RAD52 genes." Genetics 139, nr 1 (1.01.1995): 109–23. http://dx.doi.org/10.1093/genetics/139.1.109.
Pełny tekst źródłaToma, Aya, Tomio Takahashi, Yusuke Sato, Sakurako Goto-Ito, Atsushi Yamagata i Shuya Fukai. "Ubiquitin recognition by UBZ and UMI domains for DNA damage response". Acta Crystallographica Section A Foundations and Advances 70, a1 (5.08.2014): C1642. http://dx.doi.org/10.1107/s2053273314083570.
Pełny tekst źródłaChoi, Jihyun, Muwen Kong, Danielle N. Gallagher, Kevin Li, Gabriel Bronk, Yiting Cao, Eric Greene i James E. Haber. "Repair of mismatched templates during Rad51-dependent Break-Induced Replication". PLOS Genetics 18, nr 9 (2.09.2022): e1010056. http://dx.doi.org/10.1371/journal.pgen.1010056.
Pełny tekst źródłaYu, Tai-Yuan, Michael T. Kimble i Lorraine S. Symington. "Sae2 antagonizes Rad9 accumulation at DNA double-strand breaks to attenuate checkpoint signaling and facilitate end resection". Proceedings of the National Academy of Sciences 115, nr 51 (3.12.2018): E11961—E11969. http://dx.doi.org/10.1073/pnas.1816539115.
Pełny tekst źródłaPan, Hai, Miao Jin, Ashwin Ghadiyaram, Parminder Kaur, Henry E. Miller, Hai Minh Ta, Ming Liu i in. "Cohesin SA1 and SA2 are RNA binding proteins that localize to RNA containing regions on DNA". Nucleic Acids Research 48, nr 10 (30.04.2020): 5639–55. http://dx.doi.org/10.1093/nar/gkaa284.
Pełny tekst źródłaZhang, Ming, i Patrick C. Swanson. "Recognition and cleavage of cryptic recombination signal sequences identified from lymphoid malignancies (49.20)". Journal of Immunology 178, nr 1_Supplement (1.04.2007): S86—S87. http://dx.doi.org/10.4049/jimmunol.178.supp.49.20.
Pełny tekst źródłaPastwa, Elzbieta, Tomasz Poplawski, Agnieszka Czechowska, Mariusz Malinowski i Janusz Blasiak. "Non-homologous DNA End Joining Repair in Normal and Leukemic Cells Depends on the Substrate Ends". Zeitschrift für Naturforschung C 60, nr 5-6 (1.06.2005): 493–500. http://dx.doi.org/10.1515/znc-2005-5-619.
Pełny tekst źródłaGamble, Dionna, Samantha Shaltz i Sue Jinks-Robertson. "Recombinational Repair of Nuclease-Generated Mitotic Double-Strand Breaks with Different End Structures in Yeast". G3: Genes|Genomes|Genetics 10, nr 10 (21.08.2020): 3821–29. http://dx.doi.org/10.1534/g3.120.401603.
Pełny tekst źródłaSegal, D. J., A. F. Faruqi, P. M. Glazer i D. Carroll. "Processing of targeted psoralen cross-links in Xenopus oocytes." Molecular and Cellular Biology 17, nr 11 (listopad 1997): 6645–52. http://dx.doi.org/10.1128/mcb.17.11.6645.
Pełny tekst źródłaRaczko, Anna M., Janusz M. Bujnicki, Marcin Pawłowski, Renata Godlewska, Magdalena Lewandowska i Elżbieta K. Jagusztyn-Krynicka. "Characterization of new DsbB-like thiol-oxidoreductases of Campylobacter jejuni and Helicobacter pylori and classification of the DsbB family based on phylogenomic, structural and functional criteria". Microbiology 151, nr 1 (1.01.2005): 219–31. http://dx.doi.org/10.1099/mic.0.27483-0.
Pełny tekst źródłaSéguéla-Arnaud, Mathilde, Wayne Crismani, Cécile Larchevêque, Julien Mazel, Nicole Froger, Sandrine Choinard, Afef Lemhemdi i in. "Multiple mechanisms limit meiotic crossovers: TOP3α and two BLM homologs antagonize crossovers in parallel to FANCM". Proceedings of the National Academy of Sciences 112, nr 15 (30.03.2015): 4713–18. http://dx.doi.org/10.1073/pnas.1423107112.
Pełny tekst źródłaAltland, James E., M. Gabriela Buamscha i Donald A. Horneck. "Substrate pH Affects Nutrient Availability in Fertilized Douglas Fir Bark Substrates". HortScience 43, nr 7 (grudzień 2008): 2171–78. http://dx.doi.org/10.21273/hortsci.43.7.2171.
Pełny tekst źródłaRoy, Subir, S. Rangaswamy Reddy, P. Sindhuja, Dipak Das i V. V. Bhauprasad. "AlPO4-C Composite Coating on Ni-based Super Alloy Substrates for High Emissivity Applications : Experimentation on Dip Coating and Spray Coating". Defence Science Journal 66, nr 4 (28.06.2016): 425. http://dx.doi.org/10.14429/dsj.66.10220.
Pełny tekst źródłaGabriel, Magdalena Zazirska, James E. Altland i James S. Owen. "The Effect of Physical and Hydraulic Properties of Peatmoss and Pumice on Douglas Fir Bark Based Soilless Substrates". HortScience 44, nr 3 (czerwiec 2009): 874–78. http://dx.doi.org/10.21273/hortsci.44.3.874.
Pełny tekst źródłaNdaru, Elias, Rachel-Ann A. Garibsingh, Laura Zielewicz, Avner Schlessinger i Christof Grewer. "Interaction of the neutral amino acid transporter ASCT2 with basic amino acids". Biochemical Journal 477, nr 8 (27.04.2020): 1443–57. http://dx.doi.org/10.1042/bcj20190859.
Pełny tekst źródła