Gotowa bibliografia na temat „Drugs Metabolism”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Drugs Metabolism”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Drugs Metabolism"
Lambie, David G., i Ralph H. Johnson. "Drugs and Folate Metabolism". Drugs 30, nr 2 (sierpień 1985): 145–55. http://dx.doi.org/10.2165/00003495-198530020-00003.
Pełny tekst źródłaDesouza, Cyrus, Mary Keebler, Dennis B. McNamara i Vivian Fonseca. "Drugs Affecting Homocysteine Metabolism". Drugs 62, nr 4 (2002): 605–16. http://dx.doi.org/10.2165/00003495-200262040-00005.
Pełny tekst źródłaJann, Michael W., Y. W. Francis Lam, Eric C. Gray i Wen-Ho Chang. "REVERSIBLE METABOLISM OF DRUGS". Drug Metabolism and Drug Interactions 11, nr 1 (styczeń 1994): 1–24. http://dx.doi.org/10.1515/dmdi.1994.11.1.1.
Pełny tekst źródłaReiher, Jean. "Metabolism of Antiepileptic Drugs". Journal of Clinical Neurophysiology 2, nr 3 (lipiec 1985): 309. http://dx.doi.org/10.1097/00004691-198507000-00007.
Pełny tekst źródłaFranceschini, Guido, i Rodolfo Paoletti. "Drugs controlling triglyceride metabolism". Medicinal Research Reviews 13, nr 2 (marzec 1993): 125–38. http://dx.doi.org/10.1002/med.2610130202.
Pełny tekst źródłaGhiselli, Giancarlo, i Marco Maccarana. "Drugs affecting glycosaminoglycan metabolism". Drug Discovery Today 21, nr 7 (lipiec 2016): 1162–69. http://dx.doi.org/10.1016/j.drudis.2016.05.010.
Pełny tekst źródłaKostner, G. M. "Drugs affecting lipid metabolism". Chemistry and Physics of Lipids 51, nr 1 (lipiec 1989): 73–74. http://dx.doi.org/10.1016/0009-3084(89)90068-6.
Pełny tekst źródłaDurrington, P. "Drugs Affecting Lipid Metabolism". International Journal of Cardiology 45, nr 2 (czerwiec 1994): 153–54. http://dx.doi.org/10.1016/0167-5273(94)90276-3.
Pełny tekst źródłaSitar, Daniel S. "Metabolism of Thioamide Antithyroid Drugs". Drug Metabolism Reviews 22, nr 5 (styczeń 1990): 477–502. http://dx.doi.org/10.3109/03602539008991448.
Pełny tekst źródłaKelly, Patrick, i Barry Kahan. "Review: Metabolism of Immunosuppressant Drugs". Current Drug Metabolism 3, nr 3 (1.06.2002): 275–87. http://dx.doi.org/10.2174/1389200023337630.
Pełny tekst źródłaRozprawy doktorskie na temat "Drugs Metabolism"
Bai, Shuang. "Effect of immunosuppressive agents on drug metabolism in rats". Thesis, Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3008270.
Pełny tekst źródłaBritt, Adrian John. "Cocaine metabolism in Pseudomonas maltophilia MB11L". Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386328.
Pełny tekst źródła王漪雯 i Belinda Wong. "Haloperidol metabolism in man and animals". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B3121194X.
Pełny tekst źródłaWong, Belinda. "Haloperidol metabolism in man and animals /". [Hong Kong] : University of Hong Kong, 1993. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13671546.
Pełny tekst źródłaDaneshmend, T. K. "Observations on presystemic metabolism of drugs in man". Thesis, University of Bristol, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.482894.
Pełny tekst źródłaPriston, Melanie Jane. "Studies on the pharmacokinetics and metabolism of mitozantrone". Thesis, University of Exeter, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303766.
Pełny tekst źródłaPereira, Maria J. "Effects of immunosuppressive drugs on human adipose tissue metabolism". Doctoral thesis, University of Gothenburg, 2012. http://hdl.handle.net/10400.1/4916.
Pełny tekst źródłaThe immunosuppressive agents (IAs) rapamycin, cyclosporin A and tacrolimus, as well as glucocorticoids are used to prevent rejection of transplanted organs and to treat autoimmune disorders. Despite their desired action on the immune system, these agents have serious longterm metabolic side-effects, including dyslipidemia and new onset diabetes mellitus after transplantation. The overall aim is to study the effects of IAs on human adipose tissue glucose and lipid metabolism, and to increase our understanding of the molecular mechanisms underlying the development of insulin resistance during immunosuppressive therapy. In Paper I and II, it was shown that rapamycin and the calcineurin inhibitors, cyclosporin A and tacrolimus, at therapeutic concentrations, had a concentration-dependent inhibitory effect on basal and insulin-stimulated glucose uptake in human subcutaneous and omental adipocytes. Rapamycin inhibited mammalian target of rapamycin complex (mTORC) 1 and 2 assembly and phosphorylation of protein kinase B (PKB) at Ser473 and of the PKB substrate AS160, and this leads to impaired insulin signalling (Paper I). On the other hand, cyclosporin A and tacrolimus had no effects on expression or phosphorylation of insulin signalling proteins (insulin receptor substrate 1 and 2, PKB, AS160), as well as the glucose transport proteins, GLUT4 and GLUT1 (Paper II). Instead, removal of GLUT4 from the cell surfasse was observed, probably mediated through increased endocytosis, as shown in L6 musclederived cells. These studies suggest a different mechanism for cyclosporin A and tacrolimus, in comparison to rapamycin, with respect to impairment of glucose uptake in adipocytes. In Paper III, all three IAs increased isoproterenol-stimulated lipolysis and enhanced phosphorylation of one of the main lipases involved in lipolysis, hormone-sensitive lipase. The agents also inhibited lipid storage, and tacrolimus and rapamycin down-regulated gene expression of lipogenic genes in adipose tissue. All three IAs increased interleukin-6 (IL-6), but not tumor necrosis factor α (TNF-α ) or adiponectin, gene expression and secretion. In Paper IV, we proposed that FKBP5 is a novel gene regulated by dexamethasone, a synthetic glucocorticoid, in both subcutaneous and omental adipose tissue. FKBP5 expression in subcutaneous adipose tissue is correlated with clinical and biochemical markers of insulin resistance and adiposity. In addition, the FKBP5 gene product was more abundant in omental than in subcutaneous adipose tissue. In conclusion, adverse effects of immunosuppressive drugs on human adipose tissue glucose and lipid metabolism can contribute to the development of insulin resistance, type 2 diabetes and dyslipidemia in patients on immunosuppressive therapy. The cellular mechanisms that are described in this thesis should be further explored in order to mitigate the metabolic perturbations caused by current immunosuppressive therapies. The findings in this thesis could potentially also provide novel pharmacological mechanisms for type 2 diabetes as well as other forms of diabetes.
Godwin, Bryan. "Discrete sliding mode control of drug infusions". Thesis, Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/16806.
Pełny tekst źródłaBenchaoui, Hafid Abdelaali. "Factors affecting the pharmacokinetics, metabolism and efficacy of anthelmintic drugs". Thesis, University of Glasgow, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284569.
Pełny tekst źródłaNgulube, Thabale Jack. "The interaction of anti-malarial drugs and steroid hormone metabolism". Thesis, University of Leeds, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329825.
Pełny tekst źródłaKsiążki na temat "Drugs Metabolism"
Catapano, A. L., A. M. Gotto, Louis C. Smith i Rodolfo Paoletti, red. Drugs Affecting Lipid Metabolism. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1703-6.
Pełny tekst źródłaPaoletti, Rodolfo, David Kritchevsky i William L. Holmes, red. Drugs Affecting Lipid Metabolism. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71702-4.
Pełny tekst źródłaGotto, A. M., R. Paoletti, L. C. Smith, A. L. Catapano i A. S. Jackson, red. Drugs Affecting Lipid Metabolism. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0311-1.
Pełny tekst źródłaL, Catapano Alberico, i International Symposium on Drugs Affecting Lipid Metabolism, (11th : 1992 : Florence, Italy), red. Drugs affecting lipid metabolism. Dordrecht: Kluwer Academic Publishers, 1993.
Znajdź pełny tekst źródłaRodolfo, Paoletti, Kritchevsky David 1920-, Holmes William L. 1918- i Drugs Affecting Lipid Metabolism Meeting (1986 : Florence, Italy), red. Drugs affecting lipid metabolism. Berlin: Springer-Verlag, 1987.
Znajdź pełny tekst źródłaGarth, Powis, red. Anticancer drugs: Reactive metabolism and drug interactions. Oxford, England: Pergamon Press, 1994.
Znajdź pełny tekst źródła1949-, Gibson G. Gordon, red. Progress in drug metabolism. New York: John Wiley, 1988.
Znajdź pełny tekst źródła1938-, Bieck Peter R., red. Colonic drug absorption and metabolism. New York: M. Dekker, 1993.
Znajdź pełny tekst źródłaKritchevsky, David, William L. Holmes i Rodolfo Paoletti, red. Drugs Affecting Lipid Metabolism VIII. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2459-1.
Pełny tekst źródłaInternational Symposium on Drugs Affecting Lipid Metabolism (8th 1983 Philadelphia, Pa.). Drugs affecting lipid metabolism VIII. New York: Plenum Press, 1985.
Znajdź pełny tekst źródłaCzęści książek na temat "Drugs Metabolism"
Dwyer, B. E., i C. G. Wasterlain. "Intermediary Metabolism". W Antiepileptic Drugs, 79–100. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-69518-6_4.
Pełny tekst źródłaStene, Danny O., i Robert C. Murphy. "Metabolism of Sulfidopeptide Leukotrienes". W Prostanoids and Drugs, 37–46. New York, NY: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-7938-6_6.
Pełny tekst źródłaVuilhorgne, M., C. Gaillard, G. J. Sanderink, I. Royer, B. Monsarrat, J. Dubois i M. Wright. "Metabolism of Taxoid Drugs". W ACS Symposium Series, 98–110. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/bk-1995-0583.ch007.
Pełny tekst źródłaTatum, William O. "Metabolism and Antiseizure Drugs". W Epilepsy Case Studies, 87–93. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01366-4_20.
Pełny tekst źródłaMeyer, Markus R., i Hans H. Maurer. "Drugs of Abuse (Including Designer Drugs)". W Metabolism of Drugs and Other Xenobiotics, 429–63. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527630905.ch16.
Pełny tekst źródłaRiedmaier, Stephan, i Ulrich M. Zanger. "Cardiovascular Drugs". W Metabolism of Drugs and Other Xenobiotics, 331–63. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527630905.ch12.
Pełny tekst źródłaSchwab, Matthias, Elke Schaeffeler i Hiltrud Brauch. "Anticancer Drugs". W Metabolism of Drugs and Other Xenobiotics, 365–78. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527630905.ch13.
Pełny tekst źródłaKhojasteh, Siamak Cyrus, Harvey Wong i Cornelis E. C. A. Hop. "Approved Drugs". W Drug Metabolism and Pharmacokinetics Quick Guide, 193–200. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-5629-3_11.
Pełny tekst źródłaMoore, Michael R., Kenneth E. L. McColl, Claude Rimington i Abraham Goldberg. "Drugs, Chemicals, and Porphyria". W Disorders of Porphyrin Metabolism, 139–65. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-1277-2_5.
Pełny tekst źródłaChung, Y. L., i J. R. Griffiths. "Using Metabolomics to Monitor Anticancer Drugs". W Oncogenes Meet Metabolism, 55–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/2789_2008_089.
Pełny tekst źródłaStreszczenia konferencji na temat "Drugs Metabolism"
Ge, Xiaowei, Fátima C. Pereira, Yifan Zhu, Michael Wagner i Ji-Xin Cheng. "Unveiling the impact of drug on single cell metabolism in human gut microbiome by an SRS-FISH platform". W Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/fio.2023.fm6e.3.
Pełny tekst źródłaTourlomousis, Filippos, i Robert C. Chang. "2D and 3D Multiscale Computational Modeling of Dynamic Microorgan Devices as Drug Screening Platforms". W ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52734.
Pełny tekst źródłaMrkalić, Emina, Marina Ćendić Serafinović, Ratomir Jelić, Stefan Stojanović i Miroslav Sovrlić. "INFLUENCE OF QUERCETIN ON THE BINDING OF TIGECYCLINE TO HUMAN SERUM ALBUMIN". W 1st INTERNATIONAL Conference on Chemo and BioInformatics. Institute for Information Technologies, University of Kragujevac, 2021. http://dx.doi.org/10.46793/iccbi21.363m.
Pełny tekst źródłaPogodaeva, P. S. "Changes in the parameters of a clinical blood test in rats using hypoglycemic agents for the potentiation of drugs with a hepatoprotective effect". W SPbVetScience. FSBEI HE St. Petersburg SUVM, 2023. http://dx.doi.org/10.52419/3006-2023-11-28-34.
Pełny tekst źródłaRautiola, Davin, i Ronald A. Siegel. "Nasal Spray Device for Administration of Two-Part Drug Formulations". W 2019 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/dmd2019-3216.
Pełny tekst źródłaBešlo, Drago, Dejan Agić, Vesna Rastija, Maja Karnaš, Domagoj Šubarić i Bono Lučić. "Analysis of prediction of water solubility and lipophilicity of coumarins by free cheminformatics tools". W 2nd International Conference on Chemo and Bioinformatics. Institute for Information Technologies, University of Kragujevac, 2023. http://dx.doi.org/10.46793/iccbi23.657d.
Pełny tekst źródłaAbduldayeva, Aigul, i Ainagul Kazbekova. "Dynamics of lipid metabolism in the combined therapy of antihypertensive and hypolipidemic drugs in patients with metabolic syndrome". W Diabetes Kongress 2023 - 57. Jahrestagung der DDG. Georg Thieme Verlag, 2023. http://dx.doi.org/10.1055/s-0043-1767897.
Pełny tekst źródłaLei, Xiang-He, Shawn Noble i Barry R. Bochner. "Abstract B42: Metabolic pathway changes induced by a PIK3 mutation and reverted by drugs". W Abstracts: AACR Special Conference: Metabolism and Cancer; June 7-10, 2015; Bellevue, WA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1557-3125.metca15-b42.
Pełny tekst źródłaBing, Cheng, Guo Ke, Alex Wong i Karen Crasta. "Abstract B59: Autophagy mediates senescence and supports survival upon treatment with anti-mitotic drugs". W Abstracts: AACR Special Conference: Metabolism and Cancer; June 7-10, 2015; Bellevue, WA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1557-3125.metca15-b59.
Pełny tekst źródłaMa, Liang, Jeremy Barker, Changchun Zhou, Biaoyang Lin i Wei Li. "A Perfused Two-Chamber System for Anticancer Drug Screening". W ASME 2010 International Manufacturing Science and Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/msec2010-34326.
Pełny tekst źródłaRaporty organizacyjne na temat "Drugs Metabolism"
Chipiso, Kudzanai. Biomimetic Tools in Oxidative Metabolism: Characterization of Reactive Metabolites from Antithyroid Drugs. Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.3078.
Pełny tekst źródłaXiang, Kemeng, Huiming Hou i Ming Zhou. The efficacy of Cerus and Cucumis Polypeptide injection combined with Bisphosphonates on postmenopausal women with osteoporosis:A protocol for systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, maj 2022. http://dx.doi.org/10.37766/inplasy2022.5.0067.
Pełny tekst źródłaHawkins, David R. Determination of Drug Pharmacokinetics and Metabolic Profile. Volume 2. Fort Belvoir, VA: Defense Technical Information Center, marzec 1988. http://dx.doi.org/10.21236/ada192428.
Pełny tekst źródłaJin, Dachuan, Gao Peng, Shunqin Jin, Tao Zhou, Baoqiang Guo i Guangming Li. Comparison of therapeutic effects of anti-diabetic drugs on non-alcoholic fatty liver disease patients without diabetes: A network meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, listopad 2022. http://dx.doi.org/10.37766/inplasy2022.11.0014.
Pełny tekst źródłaHalim, Nader. Regulation of Brain Glucose Metabolic Patterns by Protein Phosphorlyation and Drug Therapy. Fort Belvoir, VA: Defense Technical Information Center, marzec 2007. http://dx.doi.org/10.21236/ad1013984.
Pełny tekst źródłaGhosal, Samit, i Binayak Sinha. The cardiovascular benefits of GLP1-RA are directly related to their positive effect on glycaemic control: A meta-regression analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, styczeń 2022. http://dx.doi.org/10.37766/inplasy2022.1.0071.
Pełny tekst źródłaLiu, Shuang, Zheng-Miao Wang, Dong-Mei Lv i Yi-Xuan Zhao. Advances in highly active one-carbon metabolism in cancer diagnosis, treatment, and drug resistance: a systematic review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, listopad 2022. http://dx.doi.org/10.37766/inplasy2022.11.0099.
Pełny tekst źródłaHu, Yang Yang, Xing Zhang, Yue Luo i Yadong Wang. Systematic review and Meta analysis of the efficacy and safety of rifaximin in the prevention and treatment of hepatic encephalopathy. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, luty 2023. http://dx.doi.org/10.37766/inplasy2023.2.0061.
Pełny tekst źródłaCytryn, Eddie, Mark R. Liles i Omer Frenkel. Mining multidrug-resistant desert soil bacteria for biocontrol activity and biologically-active compounds. United States Department of Agriculture, styczeń 2014. http://dx.doi.org/10.32747/2014.7598174.bard.
Pełny tekst źródła