Gotowa bibliografia na temat „DRUG REPURPOSING APPROACH”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „DRUG REPURPOSING APPROACH”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "DRUG REPURPOSING APPROACH"
Khan, Saba, Jaya Agnihotri, Sunanda Patil i Nikhat Khan. "Drug repurposing: A futuristic approach in drug discovery". Journal of Pharmaceutical and Biological Sciences 11, nr 1 (15.07.2023): 66–69. http://dx.doi.org/10.18231/j.jpbs.2023.011.
Pełny tekst źródłaZhu, Yongjun, Chao Che, Bo Jin, Ningrui Zhang, Chang Su i Fei Wang. "Knowledge-driven drug repurposing using a comprehensive drug knowledge graph". Health Informatics Journal 26, nr 4 (17.07.2020): 2737–50. http://dx.doi.org/10.1177/1460458220937101.
Pełny tekst źródłaIslam, Md Mohaiminul, Yang Wang i Pingzhao Hu. "A Maximum Flow-Based Approach to Prioritize Drugs for Drug Repurposing of Chronic Diseases". Life 11, nr 11 (20.10.2021): 1115. http://dx.doi.org/10.3390/life11111115.
Pełny tekst źródłaTrivedi, Jay, Mahesh Mohan i Siddappa N. Byrareddy. "Drug Repurposing Approaches to Combating Viral Infections". Journal of Clinical Medicine 9, nr 11 (23.11.2020): 3777. http://dx.doi.org/10.3390/jcm9113777.
Pełny tekst źródłaUdrescu, Lucreţia, Paul Bogdan, Aimée Chiş, Ioan Ovidiu Sîrbu, Alexandru Topîrceanu, Renata-Maria Văruţ i Mihai Udrescu. "Uncovering New Drug Properties in Target-Based Drug–Drug Similarity Networks". Pharmaceutics 12, nr 9 (16.09.2020): 879. http://dx.doi.org/10.3390/pharmaceutics12090879.
Pełny tekst źródłaMeera, Muthu, Sindhu Sekar i Rajkishore Mahatao. "A novel approach for drug discovery-drug repurposing". National Journal of Physiology, Pharmacy and Pharmacology 12, nr 5 (2022): 1. http://dx.doi.org/10.5455/njppp.2022.12.03127202230032022.
Pełny tekst źródłaKhataniar, Ankita, Upasana Pathak, Sanchaita Rajkhowa i Anupam Nath Jha. "A Comprehensive Review of Drug Repurposing Strategies against Known Drug Targets of COVID-19". COVID 2, nr 2 (26.01.2022): 148–67. http://dx.doi.org/10.3390/covid2020011.
Pełny tekst źródłaLee, Hyeong-Min, i Yuna Kim. "Drug Repurposing Is a New Opportunity for Developing Drugs against Neuropsychiatric Disorders". Schizophrenia Research and Treatment 2016 (2016): 1–12. http://dx.doi.org/10.1155/2016/6378137.
Pełny tekst źródłaZhu, Yongjun, Woojin Jung, Fei Wang i Chao Che. "Drug repurposing against Parkinson's disease by text mining the scientific literature". Library Hi Tech 38, nr 4 (24.04.2020): 741–50. http://dx.doi.org/10.1108/lht-08-2019-0170.
Pełny tekst źródłaKaraman, Berin, i Wolfgang Sippl. "Computational Drug Repurposing: Current Trends". Current Medicinal Chemistry 26, nr 28 (25.10.2019): 5389–409. http://dx.doi.org/10.2174/0929867325666180530100332.
Pełny tekst źródłaRozprawy doktorskie na temat "DRUG REPURPOSING APPROACH"
Regan-Fendt, Kelly E. "Integrative Network and Transcriptomics Approach Enables Computational Drug Repurposing and Drug Combination Discovery in Melanoma". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1521209048981327.
Pełny tekst źródłaJary, Calvin. "Pre-Clinical Assessment of the Proteasomal Inhibitor Bortezomib as a Generalized Therapeutic Approach for Recessively Inherited Disorders". Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36066.
Pełny tekst źródłaWolf, Stefan. "Novel Approaches in the Treatment of Virus- Induced Inflammatory Disease". Thesis, Griffith University, 2016. http://hdl.handle.net/10072/366853.
Pełny tekst źródłaThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Institute for Glycomics
Science, Environment, Engineering and Technology
Full Text
Hänzelmann, Sonja 1981. "Pathway-centric approaches to the analysis of high-throughput genomics data". Doctoral thesis, Universitat Pompeu Fabra, 2012. http://hdl.handle.net/10803/108337.
Pełny tekst źródłaEn l'última dècada, la biologia molecular ha evolucionat des d'una perspectiva reduccionista cap a una perspectiva a nivell de sistemes que intenta desxifrar les complexes interaccions entre els components cel•lulars. Amb l'aparició de les tecnologies d'alt rendiment actualment és possible interrogar genomes sencers amb una resolució sense precedents. La dimensió i la naturalesa desestructurada d'aquestes dades ha posat de manifest la necessitat de desenvolupar noves eines i metodologies per a convertir aquestes dades en coneixement biològic. Per contribuir a aquest repte hem explotat l'abundància de dades genòmiques procedents d'instruments d'alt rendiment i disponibles públicament, i hem desenvolupat mètodes bioinformàtics focalitzats en l'extracció d'informació a nivell de via molecular en comptes de fer-ho al nivell individual de cada gen. En primer lloc, hem desenvolupat GSVA (Gene Set Variation Analysis), un mètode que facilita l'organització i la condensació de perfils d'expressió dels gens en conjunts. GSVA possibilita anàlisis posteriors en termes de vies moleculars amb dades d'expressió gènica provinents de microarrays i RNA-seq. Aquest mètode estima la variació de les vies moleculars a través d'una població de mostres i permet la integració de fonts heterogènies de dades biològiques amb mesures d'expressió a nivell de via molecular. Per il•lustrar les característiques de GSVA, l'hem aplicat a diversos casos usant diferents tipus de dades i adreçant qüestions biològiques. GSVA està disponible com a paquet de programari lliure per R dins el projecte Bioconductor. En segon lloc, hem desenvolupat una estratègia centrada en vies moleculars basada en el genoma per reposicionar fàrmacs per la diabetis tipus 2 (T2D). Aquesta estratègia consisteix en dues fases: primer es construeix una xarxa reguladora que s'utilitza per identificar mòduls de regulació gènica que condueixen a la malaltia; després, a partir d'aquests mòduls es busquen compostos que els podrien afectar. La nostra estratègia ve motivada per l'observació que els gens que provoquen una malaltia tendeixen a agrupar-se, formant mòduls patogènics, i pel fet que podria caldre una actuació simultània sobre múltiples gens per assolir un efecte en el fenotipus de la malaltia. Per trobar compostos potencials, hem usat dades genòmiques exposades a compostos dipositades en bases de dades públiques. Hem recollit unes 20.000 mostres que han estat exposades a uns 1.800 compostos. L'expressió gènica es pot interpretar com un fenotip intermedi que reflecteix les vies moleculars desregulades subjacents a una malaltia. Per tant, considerem que els gens d'un mòdul patològic que responen, a nivell transcripcional, d'una manera similar a l'exposició del medicament tenen potencialment un efecte terapèutic. Hem aplicat aquesta estratègia a dades d'expressió gènica en illots pancreàtics humans corresponents a individus sans i diabètics, i hem identificat quatre compostos potencials (methimazole, pantoprazole, extracte de taronja amarga i torcetrapib) que podrien tenir un efecte positiu sobre la secreció de la insulina. Aquest és el primer cop que una xarxa reguladora d'illots pancreàtics humans s'ha utilitzat per reposicionar compostos per a T2D. En conclusió, aquesta tesi aporta dos enfocaments diferents en termes de vies moleculars a problemes bioinformàtics importants, com ho son el contrast de la funció biològica i el reposicionament de fàrmacs "in silico". Aquestes contribucions demostren el paper central de les anàlisis basades en vies moleculars a l'hora d'interpretar dades genòmiques procedents d'instruments d'alt rendiment.
Lee, Kun-Pu, i 李坤樸. "Literature-based Discovery for Drug Repurposing: A Path-importance-based Approach". Thesis, 2017. http://ndltd.ncl.edu.tw/handle/14698997967264068188.
Pełny tekst źródła國立臺灣大學
資訊管理學研究所
105
Drug development is costly and time-consuming. According to United States Food and Drug Administration (FDA), drug development consists of five stages, including drug discovery, clinical test, FDA review, etc. However, once one of the stages fails, the investment on candidate drug seldom returns. As a result, to overcome the challenges of drug development, researchers start to explore alternative methods for drug development. Drug repurposing discovery, finding new indications for existing drugs, has been proposed to help reduce cost and time needed for drug development. Swanson (1986) originally proposed a drug repurposing approach that analyzes biomedical literatures to uncover implicit relationships. Previous studies following Swanson’s ABC model encountered several limitations. Therefore, in this research, we propose a path-importance-based approach, which constructs a concept network based on semantic predication, trains a classification model to determine the importance of paths that connecting a focal drug and a candidate disease, and finally ranks candidate diseases according to the importance of paths identified by the path importance classification model. In our systematic evaluation experiments, we prove that our path importance classification model achieves a satisfactory effectiveness, and that adopting the concept of path importance into the ranking of candidate drugs for drug repurposing outperforms the traditional method.
BHARDWAJ, SHANU. "A DRUG REPURPOSING APPROACH THROUGH PHARMACOPHORE MODELING AND MOLECULAR DOCKING TO MANAGE ALZHEIMER’S DISEASE VIA GSK-3β MODULATION". Thesis, 2023. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19814.
Pełny tekst źródłaPhilips, Santosh. "Computational biology approaches in drug repurposing and gene essentiality screening". Diss., 2016. http://hdl.handle.net/1805/10978.
Pełny tekst źródłaThe rapid innovations in biotechnology have led to an exponential growth of data and electronically accessible scientific literature. In this enormous scientific data, knowledge can be exploited, and novel discoveries can be made. In my dissertation, I have focused on the novel molecular mechanism and therapeutic discoveries from big data for complex diseases. It is very evident today that complex diseases have many factors including genetics and environmental effects. The discovery of these factors is challenging and critical in personalized medicine. The increasing cost and time to develop new drugs poses a new challenge in effectively treating complex diseases. In this dissertation, we want to demonstrate that the use of existing data and literature as a potential resource for discovering novel therapies and in repositioning existing drugs. The key to identifying novel knowledge is in integrating information from decades of research across the different scientific disciplines to uncover interactions that are not explicitly stated. This puts critical information at the fingertips of researchers and clinicians who can take advantage of this newly acquired knowledge to make informed decisions. This dissertation utilizes computational biology methods to identify and integrate existing scientific data and literature resources in the discovery of novel molecular targets and drugs that can be repurposed. In chapters 1 of my dissertation, I extensively sifted through scientific literature and identified a novel interaction between Vitamin A and CYP19A1 that could lead to a potential increase in the production of estrogens. Further in chapter 2 by exploring a microarray dataset from an estradiol gene sensitivity study I was able to identify a potential novel anti-estrogenic indication for the commonly used urinary analgesic, phenazopyridine. Both discoveries were experimentally validated in the laboratory. In chapter 3 of my dissertation, through the use of a manually curated corpus and machine learning algorithms, I identified and extracted genes that are essential for cell survival. These results brighten the reality that novel knowledge with potential clinical applications can be discovered from existing data and literature by integrating information across various scientific disciplines.
Hsieh, Hao-Wen, i 謝皓雯. "Guiding drug repurposing for precision medicine via novel big data approaches". Thesis, 2017. http://ndltd.ncl.edu.tw/handle/88272910321654470910.
Pełny tekst źródłaChou, Ting, i 周庭. "Repurposing small-molecular drugs to block the interaction between PD-1 and PD-L1 using bioinformatic approaches". Thesis, 2017. http://ndltd.ncl.edu.tw/handle/17257607979584380986.
Pełny tekst źródłaKsiążki na temat "DRUG REPURPOSING APPROACH"
Kollur, Shiva Prasad. Drug Repurposing Approach for Non-Small Cell Lung Cancer Targeting MAPK Signaling Pathway. Eliva Press, 2021.
Znajdź pełny tekst źródłaDrug Repurposing in Cancer Therapy: Approaches and Applications. Elsevier Science & Technology, 2020.
Znajdź pełny tekst źródłaCho, William C. S., i Kenneth K. W. To. Drug Repurposing in Cancer Therapy: Approaches and Applications. Elsevier Science & Technology Books, 2020.
Znajdź pełny tekst źródłaCzęści książek na temat "DRUG REPURPOSING APPROACH"
Contini, Simone, i Simona E. Rombo. "A Collaborative Filtering Approach for Drug Repurposing". W New Trends in Database and Information Systems, 381–87. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15743-1_35.
Pełny tekst źródłaKhare, Ruchi, Sandeep Kumar Jhade, Manoj Kumar Tripathi i Rahul Shrivastava. "Drug Repurposing: An Approach for Reducing Multidrug Resistance". W Non-traditional Approaches to Combat Antimicrobial Drug Resistance, 179–90. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9167-7_7.
Pełny tekst źródłaZhao, Kai, i Hon-Cheong So. "Using Drug Expression Profiles and Machine Learning Approach for Drug Repurposing". W Methods in Molecular Biology, 219–37. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8955-3_13.
Pełny tekst źródłaAggarwal, Geeta, Pankaj Musyuni, Bharti Mangla i Ramesh K. Goyal. "Reverse Translational Approach in Repurposing of Drugs for Anticancer Therapy". W Drug Repurposing for Emerging Infectious Diseases and Cancer, 299–328. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5399-6_14.
Pełny tekst źródłaYadav, Monu, Pratibha Dhakla, Rahul Rawat, Mini Dahiya i Anil Kumar. "Therapeutic Repurposing Approach: New Opportunity for Developing Drugs Against COVID-19". W Drug Repurposing for Emerging Infectious Diseases and Cancer, 543–68. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5399-6_24.
Pełny tekst źródłaKuang, Zhaobin, Yujia Bao, James Thomson, Michael Caldwell, Peggy Peissig, Ron Stewart, Rebecca Willett i David Page. "A Machine-Learning-Based Drug Repurposing Approach Using Baseline Regularization". W Methods in Molecular Biology, 255–67. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8955-3_15.
Pełny tekst źródłaLakshmi Prasanna Marise, V., Surekha Surekha, G. N. S. Hema Sree i G. R. Saraswathy. "An In Silico Target Specific Drug Repurposing Approach for Multiple Sclerosis". W Special Publications, 79–83. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781839160783-00079.
Pełny tekst źródłaSankhe, R., A. Kumar, E. Rathi i A. Kishore. "Development of New Neprilysin Inhibitor as a Modulator of Chronic Kidney and Heart Disease Using In Silico Drug Repurposing Approach". W Special Publications, 45–49. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781839160783-00045.
Pełny tekst źródłaSharma, Tripti, Ipsa Padhy i Chita Ranjan Sahoo. "Approaches, Strategies, and Advances in Computational Drug Discovery and Drug Repurposing". W Drug Repurposing and Computational Drug Discovery, 27–58. New York: Apple Academic Press, 2023. http://dx.doi.org/10.1201/9781003347705-2.
Pełny tekst źródłaCosta, Giosuè, Anna Artese, Francesco Ortuso i Stefano Alcaro. "From Homology Modeling to the Hit Identification and Drug Repurposing: A Structure-Based Approach in the Discovery of Novel Potential Anti-Obesity Compounds". W Methods in Molecular Biology, 263–77. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1209-5_15.
Pełny tekst źródłaStreszczenia konferencji na temat "DRUG REPURPOSING APPROACH"
Amatya, Pratuat, Paola Stolfi, Flavio Lombardi i Paolo Tieri. "DruSiLa: an integrated, in-silico disease similarity-based approach for drug repurposing". W 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2022. http://dx.doi.org/10.1109/bibm55620.2022.9995073.
Pełny tekst źródłaPHATAK, SHARANGDHAR S., i SHUXING ZHANG. "A NOVEL MULTI-MODAL DRUG REPURPOSING APPROACH FOR IDENTIFICATION OF POTENT ACK1 INHIBITORS". W Proceedings of the Pacific Symposium. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814447973_0004.
Pełny tekst źródłaIbrahim, Sara. "Abstract 2906: Towards breast cancer drug repurposing based on a pathway modeling approach." W Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-2906.
Pełny tekst źródłaGupta, Nancy Sanjay, i Pravir Kumar. "TDP-43 Inhibitors in Amyotrophic Lateral Sclerosis: An Application of Drug Repurposing Approach Using FDA-Approved Drugs". W 2023 International Conference on Computational Intelligence and Sustainable Engineering Solutions (CISES). IEEE, 2023. http://dx.doi.org/10.1109/cises58720.2023.10183592.
Pełny tekst źródłaNG, CLARA, RUTH HAUPTMAN, YINLIANG ZHANG, PHILIP E. BOURNE i LEI XIE. "ANTI-INFECTIOUS DRUG REPURPOSING USING AN INTEGRATED CHEMICAL GENOMICS AND STRUCTURAL SYSTEMS BIOLOGY APPROACH". W Proceedings of the Pacific Symposium. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814583220_0014.
Pełny tekst źródłaBarrero, C. A., i F. Wang. "Identified Drug Repurposing Targets for Chronic Obstructive Pulmonary Disease Using a Systems Biology Approach". W American Thoracic Society 2022 International Conference, May 13-18, 2022 - San Francisco, CA. American Thoracic Society, 2022. http://dx.doi.org/10.1164/ajrccm-conference.2022.205.1_meetingabstracts.a4664.
Pełny tekst źródłaTripathi, Animan, i Pravir Kumar. "Identification of Putative LRRK2 Inhibitors in the Pathogensis of Parkinson's Disease: A Drug-Repurposing Approach". W 2021 5th International Conference on Information Systems and Computer Networks (ISCON). IEEE, 2021. http://dx.doi.org/10.1109/iscon52037.2021.9702406.
Pełny tekst źródłaBastikar, Alpana, Virupaksha Bastikar, Santosh Chhajed i PramodKumar Gupta. "Targeting SARS-CoV2 Main Protease using HTVS and simulation analysis: A drug repurposing approach against COVID-19". W 6th International Electronic Conference on Medicinal Chemistry. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/ecmc2020-07803.
Pełny tekst źródłaAdnan, Md, Md Nazim Uddin Chy, Md Riad Chowdhury i A. T. M. Mostafa Kamal. "<em>In silico</em> virtual screening of known drugs against SARS-CoV-2 3CL protease: A drug repurposing approach for COVID-19". W 6th International Electronic Conference on Medicinal Chemistry. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/ecmc2020-07363.
Pełny tekst źródłaChowdhury, Md Riad, i Sadia Akter. "<em>In silico </em>screening of therapeutic agents for COVID-19: A drug repurposing approach". W 7th International Electronic Conference on Medicinal Chemistry. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/ecmc2021-11359.
Pełny tekst źródłaRaporty organizacyjne na temat "DRUG REPURPOSING APPROACH"
Dawson, Stephanie. D11.6 REPO4EU Open Science Strategy. REPO4EU, kwiecień 2023. http://dx.doi.org/10.58647/repo4eu.202300d11.6.
Pełny tekst źródła