Gotowa bibliografia na temat „DRUG DISCOVERY TOOLS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „DRUG DISCOVERY TOOLS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "DRUG DISCOVERY TOOLS"
Kaur, Navneet, Mymoona Akhter i Chhavi Singla. "Drug designing: Lifeline for the drug discovery and development process". Research Journal of Chemistry and Environment 26, nr 8 (25.07.2022): 173–79. http://dx.doi.org/10.25303/2608rjce1730179.
Pełny tekst źródłaMMCCOY, MICHAEL. "DRUG DISCOVERY TOOLS DEBUT". Chemical & Engineering News Archive 80, nr 32 (12.08.2002): 8. http://dx.doi.org/10.1021/cen-v080n032.p008.
Pełny tekst źródłaZhang, Ru, i Xin Xie. "Tools for GPCR drug discovery". Acta Pharmacologica Sinica 33, nr 3 (23.01.2012): 372–84. http://dx.doi.org/10.1038/aps.2011.173.
Pełny tekst źródłaPedreira, Júlia G. B., Lucas S. Franco i Eliezer J. Barreiro. "Chemical Intuition in Drug Design and Discovery". Current Topics in Medicinal Chemistry 19, nr 19 (21.10.2019): 1679–93. http://dx.doi.org/10.2174/1568026619666190620144142.
Pełny tekst źródłaCheung, Eugene, Yan Xia, Marc A. Caporini i Jamie L. Gilmore. "Tools shaping drug discovery and development". Biophysics Reviews 3, nr 3 (wrzesień 2022): 031301. http://dx.doi.org/10.1063/5.0087583.
Pełny tekst źródłaMacRae, Calum A., i Randall T. Peterson. "Zebrafish as tools for drug discovery". Nature Reviews Drug Discovery 14, nr 10 (11.09.2015): 721–31. http://dx.doi.org/10.1038/nrd4627.
Pełny tekst źródłaWeerasekara, Sahani, Allan M. Prior i Duy H. Hua. "Current tools for norovirus drug discovery". Expert Opinion on Drug Discovery 11, nr 6 (2.05.2016): 529–41. http://dx.doi.org/10.1080/17460441.2016.1178231.
Pełny tekst źródłaIvanenkov, Yan A., Nikolay P. Savchuk, Sean Ekins i Konstantin V. Balakin. "Computational mapping tools for drug discovery". Drug Discovery Today 14, nr 15-16 (sierpień 2009): 767–75. http://dx.doi.org/10.1016/j.drudis.2009.05.016.
Pełny tekst źródłaGoff, Aaron, Daire Cantillon, Leticia Muraro Wildner i Simon J. Waddell. "Multi-Omics Technologies Applied to Tuberculosis Drug Discovery". Applied Sciences 10, nr 13 (3.07.2020): 4629. http://dx.doi.org/10.3390/app10134629.
Pełny tekst źródłaBruno, Agostino, Gabriele Costantino, Luca Sartori i Marco Radi. "The In Silico Drug Discovery Toolbox: Applications in Lead Discovery and Optimization". Current Medicinal Chemistry 26, nr 21 (19.09.2019): 3838–73. http://dx.doi.org/10.2174/0929867324666171107101035.
Pełny tekst źródłaRozprawy doktorskie na temat "DRUG DISCOVERY TOOLS"
Cereto, Massagué Adrià. "Development of tools for in silico drug discovery". Doctoral thesis, Universitat Rovira i Virgili, 2017. http://hdl.handle.net/10803/454678.
Pełny tekst źródłaEl cribado virtual es un método quimioinformático que consiste en la criba de moléculas bioactivas de grandes bases de datos de moléculas pequeñas. Esto permite a los investigadores ahorrarse el coste de probar experimentalmente cientos o miles de compuestos candidatos, reduciéndolos hasta cantidades manejables. Para la validación de los métodos de cribado virtual hacen falta bibliotecas de moléculas señuelo. El software DecoyFinder fue desarrollado como aplicación gráfica de fácil uso para la construcción de bibliotecas de moléculas señuelo, y fue posteriormente ampliado con los hallazgos de investigación posterior sobre la construcción i rendimiento de bibliotecas de moléculas señuelo. El Protein Data Bank (PDB) es muy útil porque proporciona estructuras tridimensionales para complejos proteina-ligando, y por tanto, información sobre como interactúan. Para los métodos de cribado virtual que dependen de ellas, es extremadamente importante su fiabilidad. VHELIBS fue desarrollado como herramienta para inspeccionar e identificar, fácil e intuitivamente, las estructuras fiables del PDB, basándose en como de bueno es su encaje con sus correspondientes mapas de densidad electrónica. Mientras que el cribado virtual intenta encontrar nuevas moléculas bioactivas para determinadas dianas, el enfoque inverso también se utiliza: a partir de una molécula, buscar dianas donde presente actividad biológica no documentada. Este cribado inverso es conocido en inglés como “in silico target fishing”, o pesca de dianas “in silico”, y es especialmente útil en el ámbito de la reutilización de fármacos. Al comenzar esta tesis, no había ninguna plataforma de “target fishing” de libre acceso, y aunque durante los años se han desarrollado algunas, en todos los casos su predicción de bioactividad es cualitativa. Por eso se desarrolló una plataforma propia de “target fishing” de libre acceso, con la implementación de un nuevo método que proporciona la primera predicción cuantitativa de bioactividad para este tipo de plataforma.
Virtual screening is a cheminformatics method that consists of screening large small-molecule databases for bioactive molecules. This enables the researcher to avoid the cost of experimentally testing hundreds or thousands of compounds by reducing the number of candidate molecules to be tested to manageable numbers. For their validation, virtual screening approaches need decoy molecule libraries. DecoyFinder was developed as an easy to use graphical application for decoy library building, and later updated after some research into decoy library building and their performance when used for 2D similarity approaches. The Protein Data Bank (PDB) is very useful because it provides 3D structures for protein-ligand complexes and, therefore, information on how certain ligands bind and interact with their targets. For virtual screening apporaches relying on these structures, it is of the utmost importance that the data available on the PDB for the ligand and its binding site are reliable. VHELIBS was developed as a tool to easily and intuitively inspect and identify reliable PDB structures based on the goodness of fitting between ligands and binding sites and their corresponding electron density map. While virtual screening aims to find new bioactive molecules for certain targets, the opposite approach is also used: starting from a given molecule, to search for a biological target for which it presents previously undocumented bioactivity. This reverse screening is known as in silico or computational target fishing or reverse pharmacognosy, and it is specially useful for drug repurposing or repositioning. When this thesis was started, there were no freely available target fishing platforms, but some have been developed during the years. However, they are qualitative in the nature of their activity prediction, and thus we set out to develop a freely accessible target fishing web service implementing a novel method which provides the first quantitative activity prediction: Anglerfish.
Islam, R. S. "Novel engineering tools to aid drug discovery processes". Thesis, University College London (University of London), 2007. http://discovery.ucl.ac.uk/1444794/.
Pełny tekst źródłaHesping, Eva M. "New inhibitors and tools to advance HDAC drug discovery for malaria". Thesis, Griffith University, 2021. http://hdl.handle.net/10072/403646.
Pełny tekst źródłaThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
Jenkins, Michael Joseph. "Decisional tools for cost-effective bioprocess design for cell therapies and patient-specific drug discovery tools". Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10046409/.
Pełny tekst źródłaCarrascosa, Baena María Carmen 1972. "Next generation of informatics tools for big data analytics in drug discovery". Doctoral thesis, Universitat Pompeu Fabra, 2018. http://hdl.handle.net/10803/586011.
Pełny tekst źródłaThe classical silver bullet paradigm of one drug interacting with a single target linked to a disease is currently challenged. It is now widely recognized that one drug interacts with multiple targets and these targets are involved in many biological pathways and expressed in a variety of organs. As the notion of complexity has been gradually accepted, the reductionist drug discovery approach has naturally evolved towards systems multilevel strategies. Thanks to technological advances, there has been a huge increase of data generated in the various fields relevant to drug discovery, namely, chemistry, pharmacology, toxicology, genomics, metabolomics, etc., which has expanded dramatically our ability to generate computational models with increasing performance and coverage. But ultimately, extracting knowledge from this complex, vast and heterogeneous amount of data is not straightforward. The main objective of this Thesis is to develop new interactive analytics and visualization tools and investigate their ability to extract knowledge from highly interconnected data when implemented into an integrated flexible platform to facilitate drawing simple answers from complex questions. In particular, special emphasis will be put in the navigation aspects of the relationships between systemic entities (small molecules and their metabolite, protein targets, safety terms).
Cornet, Bartolomé Carles 1991. "Novel tools in drug discovery : optimising the use of zebrafish for assessing drug safety and antitumoral efficacy". Doctoral thesis, Universitat Pompeu Fabra, 2020. http://hdl.handle.net/10803/668470.
Pełny tekst źródłaLa alta tasa de deserción de medicamentos durante fases clínicas y posteriores a la comercialización es uno de los factores principales que contribuyen a la crisis de productividad que afecta a la industria farmacéutica hoy en día. Este problema es especialmente preocupante en el sector del cáncer, donde es de dos a cuatro veces mayor que en otros sectores de la salud. La mayoría de estos medicamentos son descartados debido a problemas de seguridad (principalmente cardio, neuro, y hepatotoxicidad) y de eficacia, lo que reflejan las limitaciones de los modelos preclínicos actuales para anticipar tales inconvenientes. En este contexto, se necesitan nuevos modelos para abordar este problema y cumplir con las nuevas demandas (mayor rendimiento y predictividad) de los procesos de investigación y desarrollo (I+D). El pez cebra es un vertebrado con alta homología con los humanos y propiedades biológicas únicas, que lo hacen adecuado para estudios de alto rendimiento. El objetivo final de mi tesis es mejorar el uso de este modelo animal en un intento de mejorar la eficiencia general del proceso de I+D y, así, aliviar la crisis de productividad. Primero, se ha generado una metodología de rendimiento medio para la evaluación in vivo de las toxicidades cardíaca, neuronal, y hepática en un mismo animal, en línea con en el principio de las 3Rs. En segundo lugar, se ha estandardizado, validado y automatizado, el xenotrasplante de células tumorales humanas en larvas de pez cebra para el estudio de la eficacia de fármacos antitumorales. Los resultados obtenidos ayudan a consolidar y validar el uso del pez cebra en el proceso de I+D de nuevos fármacos, como puente entre los modelos in vitro y los modelos in vivo de mamíferos.
Mezzanotte, Laura <1982>. "Bioanalytical applications of multicolour bioluminescence imaging: new tools for drug discovery and development". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amsdottorato.unibo.it/3536/1/Mezzanotte_Laura_TESI.pdf.
Pełny tekst źródłaMezzanotte, Laura <1982>. "Bioanalytical applications of multicolour bioluminescence imaging: new tools for drug discovery and development". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amsdottorato.unibo.it/3536/.
Pełny tekst źródłaSantiago, Daniel Navarrete. "Use and Development of Computational Tools in Drug Discovery: From Small Molecules to Cyclic Peptides". Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4398.
Pełny tekst źródłaPatel, Hitesh [Verfasser], i Irmgard [Akademischer Betreuer] Merfort. "Use and development of chem-bioinformatics tools and methods for drug discovery and target identification". Freiburg : Universität, 2015. http://d-nb.info/1115495917/34.
Pełny tekst źródłaKsiążki na temat "DRUG DISCOVERY TOOLS"
Saxena, Anil Kumar, red. Biophysical and Computational Tools in Drug Discovery. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85281-8.
Pełny tekst źródłaRubenstein, Ken. Drug targets from genomics: Evolving tools for discovery. Westborough, MA: D&MD Publications, 2005.
Znajdź pełny tekst źródłaJürgen, Bajorath, red. Chemoinformatics: Concepts, methods, and tools for drug discovery. Totowa, N.J: Humana Press, 2004.
Znajdź pełny tekst źródłaK, Ghose Arup, i Viswanadhan Vellarkad N. 1954-, red. Combinatorial library design and evaluation: Principles, software tools, and applications in drug discovery. New York: Marcel Dekker, 2001.
Znajdź pełny tekst źródłaSaxena, Anil Kumar. Biophysical and Computational Tools in Drug Discovery. Springer International Publishing AG, 2021.
Znajdź pełny tekst źródłaSaxena, Anil Kumar. Biophysical and Computational Tools in Drug Discovery. Springer International Publishing AG, 2022.
Znajdź pełny tekst źródłaEgbuna, Chukwuebuka, Mithun Rudrapal i Habibu Tijjani. Phytochemistry, Computational Tools and Databases in Drug Discovery. Elsevier, 2022.
Znajdź pełny tekst źródłaEgbuna, Chukwuebuka, Mithun Rudrapal i Habibu Tijjani. Phytochemistry, Computational Tools and Databases in Drug Discovery. Elsevier, 2022.
Znajdź pełny tekst źródłaSean, Ekins, i Xu Jinghai J, red. Drug efficacy, safety, and biologics discovery: Emerging technologies and tools. Hoboken, N.J: John Wiley & Sons, 2009.
Znajdź pełny tekst źródłaEkins, Sean, i Jinghai J. Xu. Drug Efficacy, Safety, and Biologics Discovery: Emerging Technologies and Tools. Wiley & Sons, Incorporated, John, 2009.
Znajdź pełny tekst źródłaCzęści książek na temat "DRUG DISCOVERY TOOLS"
Cronin, Mark T. D. "Chapter 2. In Silico Tools for Toxicity Prediction". W Drug Discovery, 9–25. Cambridge: Royal Society of Chemistry, 2011. http://dx.doi.org/10.1039/9781849733045-00009.
Pełny tekst źródłaRoca, Carlos, Víctor Sebastián-Pérez i Nuria E. Campillo. "Chapter 7. In silico Tools for Target Identification and Drug Molecular Docking in Leishmania". W Drug Discovery, 130–52. Cambridge: Royal Society of Chemistry, 2017. http://dx.doi.org/10.1039/9781788010177-00130.
Pełny tekst źródłaBacker, Marianne D., Walter H. M. L. Luyten i Hugo F. Bossche. "Antifungal Drug Discovery: Old Drugs, New Tools". W Pathogen Genomics, 167–96. Totowa, NJ: Humana Press, 2002. http://dx.doi.org/10.1007/978-1-59259-172-5_12.
Pełny tekst źródłaBajorath, Jürgen. "Molecular Similarity Methods and QSAR Models as Tools for Virtual Screening". W Drug Discovery Handbook, 87–122. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471728780.ch3.
Pełny tekst źródłaJimenez, Elsie C., i Lourdes J. Cruz. "Conotoxins as Tools in Research on Nicotinic Receptors". W Toxins and Drug Discovery, 189–204. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-007-6452-1_17.
Pełny tekst źródłaJimenez, Elsie C., i Lourdes J. Cruz. "Conotoxins as Tools in Research on Nicotinic Receptors". W Toxins and Drug Discovery, 1–17. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-007-6726-3_17-1.
Pełny tekst źródłaJimenez, Elsie C., i Lourdes J. Cruz. "Conotoxins as Tools in Research on Nicotinic Receptors". W Toxins and Drug Discovery, 1–17. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-007-6726-3_17-2.
Pełny tekst źródłaSpyrakis*, Francesca, Pietro Cozzini i Glen E. Kellogg. "Chapter 5. Molecular Descriptors for Database Mining. Translating Empirical Chemistry into Mathematics: Tools for QSAR and In Silico Screening Based on the Hydrophobicity of Small Molecules". W Drug Discovery, 128–50. Cambridge: Royal Society of Chemistry, 2012. http://dx.doi.org/10.1039/9781849735377-00128.
Pełny tekst źródłaPapadatos, George, Valerie J. Gillet, Christopher N. Luscombe, Iain M. McLay, Stephen D. Pickett i Peter Willett. "USING CHEMOINFORMATICS TOOLS TO ANALYZE CHEMICAL ARRAYS IN LEAD OPTIMIZATION". W Chemoinformatics for Drug Discovery, 179–204. Hoboken, NJ: John Wiley & Sons, Inc, 2013. http://dx.doi.org/10.1002/9781118742785.ch9.
Pełny tekst źródłaTang, Bowen, John Ewalt i Ho-Leung Ng. "Generative AI Models for Drug Discovery". W Biophysical and Computational Tools in Drug Discovery, 221–43. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/7355_2021_124.
Pełny tekst źródłaStreszczenia konferencji na temat "DRUG DISCOVERY TOOLS"
Wang, Jing-Fang, Lin Li, Dong-Qing Wei i Kuo-Chen Chou. "Discovery of Anti-Hiv Drugs Using Computer Aided Drug Designing Tools". W 2007 1st International Conference on Bioinformatics and Biomedical Engineering. IEEE, 2007. http://dx.doi.org/10.1109/icbbe.2007.87.
Pełny tekst źródłaHe, S. R., E. J. Breen i S. M. N. Hunt. "Proteomics: approaches and image analysis tools for drug discovery". W 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698). IEEE, 2003. http://dx.doi.org/10.1109/icme.2003.1221347.
Pełny tekst źródłaXu, Xiaoxi, Satya Pathi, Limei Shang, Yan Liu, Peng Han, Likun Zhang, Binchen Mao, Davy Ouyang, Henry Li i Wenqing Yang. "Abstract 1925: Establishment and characterization of 3D cancer organoids as clinically relevantex vivodrug screening tools for cancer translational research and drug discovery". W Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-1925.
Pełny tekst źródłaXu, Xiaoxi, Satya Pathi, Limei Shang, Yan Liu, Peng Han, Likun Zhang, Binchen Mao, Davy Ouyang, Henry Li i Wenqing Yang. "Abstract 1925: Establishment and characterization of 3D cancer organoids as clinically relevantex vivodrug screening tools for cancer translational research and drug discovery". W Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-1925.
Pełny tekst źródłaDesai, A. V., M. A. Haque i W. J. Scheuchenzuber. "Single Cell Opto-Electro-Mechanical Probing: A Feasibility Study". W ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59431.
Pełny tekst źródłaLeventi-peetz, Anastasia-maria. "Human Machine Interaction and Security in the era of modern Machine Learning". W 9th International Conference on Human Interaction and Emerging Technologies - Artificial Intelligence and Future Applications. AHFE International, 2023. http://dx.doi.org/10.54941/ahfe1002963.
Pełny tekst źródłaDong, Xiao, i David Wild. "An Automatic Drug Discovery Workflow Generation Tool Using Semantic Web Technologies". W 2008 IEEE Fourth International Conference on eScience (eScience). IEEE, 2008. http://dx.doi.org/10.1109/escience.2008.36.
Pełny tekst źródłaSrivastava, Saumya, Linlin Guo, Atish Mohanty, Michael Nelson, Brian Armstrong, Prakash Kulkarni i Ravi Salgia. "Abstract 6130: Zebrafish: A prominent tool for cancer drug screening and discovery". W Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-6130.
Pełny tekst źródłaCastillo-Garit, Juan, Yoan Martínez-López, Yaile Caballero, Stephen Barigye, Yovani Marrero-Ponce, Reisel Millán Cabrera, Julio Madera, Efrain Chaluisa Quishpe i Francisco Torrens. "New tool useful for drug discovery validated through benchmark datasets". W MOL2NET 2018, International Conference on Multidisciplinary Sciences, 4th edition. Basel, Switzerland: MDPI, 2018. http://dx.doi.org/10.3390/mol2net-04-05132.
Pełny tekst źródłaLi, Fuhai, Lin Wang, Ren Kong, Jianting Sheng, Huojun Cao, James Mancuso, Xiaofeng Xia, Clifford Stephan i Stephen T. C. Wong. "DrugMoaMiner: A computational tool for mechanism of action discovery and personalized drug sensitivity prediction". W 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI). IEEE, 2016. http://dx.doi.org/10.1109/bhi.2016.7455911.
Pełny tekst źródła