Gotowa bibliografia na temat „Drug development”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Drug development”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Drug development"
Mishra, Hara Prasad, Ayush Goel, Sahil Kumar, Mihir Chauhan, Mrinal Patnaik i Imaad Rehman. "Drug development hit by war". Journal of Pharmacovigilance and Drug Research 3, nr 2 (1.06.2022): 11–15. http://dx.doi.org/10.53411/jpadr.2022.3.2.3.
Pełny tekst źródłaJadhav, Mr Gahininath Thansing, i Mr Rahul Bhavlal Jadhav. "Drug Discovery and Development Process". International Journal of Research Publication and Reviews 5, nr 1 (8.01.2024): 1891–95. http://dx.doi.org/10.55248/gengpi.5.0124.0225.
Pełny tekst źródłaAdukondalu, D., Rajesh Rajesh, Shaik Thaslim, E. Soumya i M. Chandana. "Regulatory Guidelines for New Drug Development". Pharmaceutics and Pharmacology Research 4, nr 3 (25.09.2021): 01–11. http://dx.doi.org/10.31579/2693-7247/046.
Pełny tekst źródłaSharma, Bhavik. "DRUG DISCOVERY AND DEVELOPMENT: AN OVERVIEW". INDIAN RESEARCH JOURNAL OF PHARMACY AND SCIENCE 7, nr 2 (czerwiec 2020): 2215–26. http://dx.doi.org/10.21276/irjps.2020.7.2.14.
Pełny tekst źródłaAgrawal, Shrutidevi, Narisetty Sunil Thomas, Anand Babu Dhanikula, Chaman Lal Kaul i Ramesh Panchagnula. "Antituberculosis drugs and new drug development". Current Opinion in Pulmonary Medicine 7, nr 3 (maj 2001): 142–47. http://dx.doi.org/10.1097/00063198-200105000-00005.
Pełny tekst źródłaGRABOWSKI, H. G. "Issues of Drug Development: Orphan Drugs." Science 228, nr 4702 (24.05.1985): 981. http://dx.doi.org/10.1126/science.228.4702.981.
Pełny tekst źródłaVaalburg, Willem, N. Harry Hendrikse i Erik F. J. de Vries. "Drug development, radiolabeled drugs and PET". Annals of Medicine 31, nr 6 (styczeń 1999): 432–37. http://dx.doi.org/10.3109/07853899908998801.
Pełny tekst źródłaFlaherty, Keith T., Dung T. Le i Steven Lemery. "Tissue-Agnostic Drug Development". American Society of Clinical Oncology Educational Book, nr 37 (maj 2017): 222–30. http://dx.doi.org/10.1200/edbk_173855.
Pełny tekst źródłaYamashiro, Yuichiro, Jennifer Martin, Madlen Gazarian, Sharon Kling, Hidefumi Nakamura, Akira Matsui, Salvatore Cucchiara, Marina Aloi, Erica L. Wynn i Andrew E. Mulberg. "Drug Development". Journal of Pediatric Gastroenterology and Nutrition 55, nr 5 (listopad 2012): 506–10. http://dx.doi.org/10.1097/mpg.0b013e318272af1f.
Pełny tekst źródłaWilliams, Ian. "Drug Development". Science 277, nr 5322 (4.07.1997): 17.6–21. http://dx.doi.org/10.1126/science.277.5322.17-f.
Pełny tekst źródłaRozprawy doktorskie na temat "Drug development"
Zhang, Huarui. "Design, synthesis and activity evaluation of novel exosome inhibitors". HKBU Institutional Repository, 2020. https://repository.hkbu.edu.hk/etd_oa/849.
Pełny tekst źródłaLarson, Joeanna Lee. "Perinatal Drug Abuse Intervention: Policy Development for Drug Screening". ScholarWorks, 2016. https://scholarworks.waldenu.edu/dissertations/2555.
Pełny tekst źródłaHartmann, Neil Godfried. "Intercalative drugs in cancer chemotherapy : two approaches towards drug development". Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292983.
Pełny tekst źródłaMawad, Damia Graduate School of Biomedical Engineering Faculty of Engineering UNSW. "Development of Novel hydrogels for protein drug delivery". Awarded by:University of New South Wales. Graduate School of Biomedical Engineering, 2005. http://handle.unsw.edu.au/1959.4/25221.
Pełny tekst źródłaFagnan, David Erik. "Analytics for financing drug development". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98572.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 133-139).
Financing drug development has a particular set of challenges including long development times, high chance of failure, significant market valuation uncertainty, and high costs of development. The earliest stages of translational research pose the greatest risks, which have been termed the "valley of death" as a result of a lack of funding. This thesis focuses on an exploration of financial engineering techniques aimed at addressing these concerns. Despite the recent financial crisis, many suggest that securitization is an appropriate tool for financing such large social challenges. Although securitization has been demonstrated effectively at later stages of drug development for drug royalties of approved drugs, it has yet to be utilized at earlier stages. This thesis starts by extending the model of drug development proposed by Fernandez et al. (2012). These extensions significantly influence the resulting performance and optimal securitization structures. Budget-constrained venture firms targeting high financial returns are incentivized to fund only the best projects, thereby potentially stranding less-attractive projects. Instead, such projects have the potential to be combined in larger portfolios through techniques such as securitization which reduce the cost of capital. In addition to modeling extensions, we provide examples of a model calibrated to orphan drugs, which we argue are particularly suited to financial engineering techniques. Using this model, we highlight the impact of our extensions on financial performance and compare with previously published results. We then illustrate the impact of incorporating a credit enhancement or guarantee, which allows for added flexibility of the capital structure and therefore greater access to lower costing capital. As an alternative to securitization, we provide some examples of a structured equity approach, which may allow for increased access to or efficiency of capital by matching investor objectives. Finally, we provide examples of optimizing the Sortino ratio through constrained Bayesian optimization.
by David Erik Fagnan.
Ph. D.
Voyi, Kuku Vinolia Vuyelwa. "Development of an antirheumatic drug". Doctoral thesis, University of Cape Town, 1988. http://hdl.handle.net/11427/17187.
Pełny tekst źródłaThe diamino-diamide ligands have been investigated in an attempt to develop an antirheumatic drug. The ligands N,N'-di-(2-dimethylamino)ethyloxamide and N,N'di-(2-diethylamino)ethyloxamide, were synthesised and characterised using the physical techniques, NMR, mass- and infrared spectrometry. The stability constants of the complexes of Mg, Ca, Zn and several first transition metal-ions with the ligands were determined potentiometrically. The solution conformation of the CuII complexes were determined using visible spectrophotometry. Finally the physico-chemical studies were carried out. Firstly by studying the interaction of the copper complex with albumin at the physiological pH 7.4 using visible spectrophotometry. Secondly by determining the superoxide dismutase activity of the ligand by reduction of nitrobluetetrazolium using visible spectrophotometry. Lastly the ligands and the carr, CuII, MgII and ZnII metalions were monitored in vitro using the computer blood plasma model.
Alkhaldi, Abdulsalam Abdulhadi. "Drug development against kinetoplastid parasites". Thesis, University of Glasgow, 2012. http://theses.gla.ac.uk/3637/.
Pełny tekst źródłaMavridis, Lazaros. "High throughput virtual drug screening using spherical harmonic molecular surface representations". Thesis, Available from the University of Aberdeen Library and Historic Collections Digital Resources, 2009. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=25936.
Pełny tekst źródłaWang, Shining. "DRUG DEVELOPMENT OF TARGETED ANTICANCER DRUGS BASED ON PK/PD INVESTIGATIONS". Diss., Temple University Libraries, 2008. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/2535.
Pełny tekst źródłaPh.D.
EGFR inhibitors, such as gefitinib, are examples of targeted anticancer drugs whose drug sensitivity is related to gene mutations that adds a pharmacogenetic [PG] dimension to any pharmacokinetic [PK] and pharmacodynamic [PD] analysis. The goal of this project was to characterize the PK/PD properties of gefitinib in tumors and then apply these results to design rational drug design regimens, and provide a foundation for future studies with EGFR inhibitors. Progressions of in vitro and in vivo studies were completed to understand the PK and PD behavior of gefitinib. In vitro cytotoxicity assays were first conducted to confirm the gefitinib sensitivity differences in a pair of human glioblastoma cell lines, LN229-wild-type EGFR and LN229-EGFRvIII mutant, an EGFR inhibitor-sensitizing mutation. Subsequent in vitro PD studies identified phosphorylated-ERK1/2 (pERK) as a common PD marker for both cell lines. To describe the most salient features of drug disposition and dynamics in the tumor, groups of mice bearing either subcutaneous LN229-wild-type EGFR or LN229-EGFRvIII mutant tumors were administered gefitinib at doses of 10 mg/kg intravenously (IV), 50 mg/kg intraarterially (IA) and 150 mg/kg orally (PO). In each group, gefitinib plasma and tumor concentrations were quantitated, as were tumoral pERK. Hybrid physiologically-based PK/PD models were developed for each tumor type, which consisted of a forcing function describing the plasma drug concentration-profile, a tumor compartment depicting drug disposition in the tumor, and a mechanistic target-response PD model characterizing pERK in the tumor. Gefitinib showed analogous PK properties in each tumor type, yet different PD characteristics consistent with the EGFR status of the tumors. Using the PK/PD model for each tumor type, simulations were done to define multiple-dose regimens for gefitinib that yielded equivalent PD profiles of pERK in each tumor type. Based on the designed PK/PD equivalent dosing regimens for each tumor type, gefitinib 150 mg/kg PO qd × 15 days and 65 mg/kg PO qd × 15 days multiple-dose studies were conducted in wild-type EGFR and EGFRvIII mutant tumor groups, respectively. In each tumor group, gefitinib plasma and tumor concentrations were measured on both day 1 and day 15, as were tumoral amounts of pERK. Different from single-dose model simulations, gefitinib showed nonlinear PK property in the wild-type tumor due to the down-regulation of membrane transporter ABCG2. Moreover, acquired resistance of tumoral pERK inhibition was observed in both tumor types. Nevertheless, gefitinib had an analogous growth suppression action in both tumor groups, supporting the equivalent PD dosing strategy. Overall, single-dose gefitinib PK/PD investigations in a pair of genetically distinct glioblastomas facilitated the development of hybrid physiologically-based PK/PD models for each tumor type, and further introduced a novel concept of PK/PD equivalent dosing regimens which could be applied in novel drug development paradigms. Preliminary multiple-dose gefitinib studies revealed more complex PK/PD characteristics that needed to be further explored.
Temple University--Theses
Alavi, Hajar Karimi. "Development of mechanistic mathematical models for gene-mediated drug-drug interactions". Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/development-of-mechanistic-mathematical-models-for-genemediated-drugdrug-interactions(b38da88a-bb2a-4667-9809-21a09c8feeeb).html.
Pełny tekst źródłaKsiążki na temat "Drug development"
Gaginella, Timothy S., i Antonio Guglietta, red. Drug Development. Totowa, NJ: Humana Press, 2000. http://dx.doi.org/10.1007/978-1-59259-202-9.
Pełny tekst źródłaE, Hamner Charles, red. Drug development. Wyd. 2. Boca Raton, Fla: CRC Press, 1990.
Znajdź pełny tekst źródłaC, Rogge Mark, i Taft David R, red. Preclinical drug development. Boca Raton: Taylor & Francis, 2005.
Znajdź pełny tekst źródłaDikshit, Madhu, red. Drug Discovery and Drug Development. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8002-4.
Pełny tekst źródłaG, Welling Peter, Lasagna Louis 1923- i Banakar Umesh V. 1956-, red. The drug development process. New York: M. Dekker, 1996.
Znajdź pełny tekst źródłaC, Rogge Mark, i Taft David R, red. Preclinical drug development. Wyd. 2. New York: Informa Healthcare, 2010.
Znajdź pełny tekst źródłaDe Clercq, Erik, i Richard T. Walker, red. Antiviral Drug Development. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-7275-2.
Pełny tekst źródłaMulberg, Andrew E., Dianne Murphy, Julia Dunne i Lisa L. Mathis, red. Pediatric Drug Development. Chichester, UK: John Wiley & Sons Ltd., 2013. http://dx.doi.org/10.1002/9781118312087.
Pełny tekst źródłaGiordanetto, Fabrizio Giordanetto, red. Early Drug Development. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527801756.
Pełny tekst źródłaCayen, Mitchell N., red. Early Drug Development. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470613191.
Pełny tekst źródłaCzęści książek na temat "Drug development"
Upchurch Sweeney, C. Renn, J. Rick Turner, J. Rick Turner, Chad Barrett, Ana Victoria Soto, William Whang, Carolyn Korbel i in. "Drug Development". W Encyclopedia of Behavioral Medicine, 632. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1005-9_100513.
Pełny tekst źródłaDuda-Seiman, Corina, Daniel Duda-Seiman i Mihai V. Putz. "Drug Development". W New Frontiers in Nanochemistry, 175–83. Includes bibliographical references and indexes. | Contents: Volume 1. Structural nanochemistry – Volume 2. Topological nanochemistry – Volume 3. Sustainable nanochemistry.: Apple Academic Press, 2020. http://dx.doi.org/10.1201/9780429022951-10.
Pełny tekst źródłaGuan, Zhi-Zhong, Yi Zhao i Chang-Xue Wu. "Drug Development". W Coal-burning Type of Endemic Fluorosis, 421–39. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1498-9_25.
Pełny tekst źródłaSchmidt, Marco F. "Drug Development". W Chemical Biology, 11–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-64412-6_3.
Pełny tekst źródłaMahato, Ram I., Ajit S. Narang i Virender Kumar. "Drug Development". W Pharmaceutical Dosage Forms and Drug Delivery, 23–38. Wyd. 4. New York: CRC Press, 2024. http://dx.doi.org/10.1201/9781003389378-3.
Pełny tekst źródłaWallace, John L. "The Arachidonic Acid Pathway". W Drug Development, 1–20. Totowa, NJ: Humana Press, 2000. http://dx.doi.org/10.1007/978-1-59259-202-9_1.
Pełny tekst źródłaTepperman, B. L., i B. J. R. Whittle. "Therapeutic Implications of the Nitric Oxide Pathway in Gastrointestinal Diseases". W Drug Development, 21–60. Totowa, NJ: Humana Press, 2000. http://dx.doi.org/10.1007/978-1-59259-202-9_2.
Pełny tekst źródłaLevine, Alan D., i Claudio Fiocchi. "Cytokines". W Drug Development, 61–87. Totowa, NJ: Humana Press, 2000. http://dx.doi.org/10.1007/978-1-59259-202-9_3.
Pełny tekst źródłaGuglietta, Antonio, i Marija Veljača. "Peptide Growth Factors in Gastrointestinal Disorder Therapeutics". W Drug Development, 89–112. Totowa, NJ: Humana Press, 2000. http://dx.doi.org/10.1007/978-1-59259-202-9_4.
Pełny tekst źródłaHolzer, Peter. "Tachykinins". W Drug Development, 113–46. Totowa, NJ: Humana Press, 2000. http://dx.doi.org/10.1007/978-1-59259-202-9_5.
Pełny tekst źródłaStreszczenia konferencji na temat "Drug development"
Aneesh, Ch, Gembali Saumik, K. V. V. Varun, Rajesh M i Sreevidya B. "Predictive Analytics for Anticipating Adverse Drug Reactions to ameliorate Drug Development and Prescription Practices". W 2024 Second International Conference on Inventive Computing and Informatics (ICICI), 166–70. IEEE, 2024. http://dx.doi.org/10.1109/icici62254.2024.00037.
Pełny tekst źródłaPosinasetty, Ms Bhargavi, G. S. Gayathri, Vivekanand Pandey, Aayushi Jain, S. B. G. Tilak Babu i Yashpal Singh. "AI-Enhanced Drug Screening: Accelerating Drug Development". W 2024 5th International Conference on Recent Trends in Computer Science and Technology (ICRTCST). IEEE, 2024. http://dx.doi.org/10.1109/icrtcst61793.2024.10578548.
Pełny tekst źródłaYi, Xiaole. "Drug development and drug design for hepatocellular carcinoma". W Third International Conference on Biological Engineering and Medical Science (ICBioMed2023), redaktor Alan Wang. SPIE, 2024. http://dx.doi.org/10.1117/12.3013166.
Pełny tekst źródłaLammertsma, Adriaan A. "PET in drug development". W 2012 IEEE 9th International Symposium on Biomedical Imaging (ISBI 2012). IEEE, 2012. http://dx.doi.org/10.1109/isbi.2012.6235698.
Pełny tekst źródłaSathiaseelan, Allimalar, Chong Seng Shit i Tsun-Thai Chai. "ANTI-BIOFILM ACTIVITY OF FERMENTED SOYBEAN TEMPEH EXTRACTS AND FRACTIONS AGAINST ORAL PRIMARY COLONIZER BACTERIA". W International Conference on Drug Discovery & Development. The International Institute of Knowledge Management (TIIKM), 2018. http://dx.doi.org/10.17501/icddd.2017.1101.
Pełny tekst źródłaGaynor, Richard B. "Abstract PL07-02: Rational cancer drug development for targeted drugs." W Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Nov 12-16, 2011; San Francisco, CA. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1535-7163.targ-11-pl07-02.
Pełny tekst źródłaGhosh, Priyanka, Sam G. Raney i Markham C. Luke. "Role of visualizing and quantifying drugs in dermal drug development". W Visualizing and Quantifying Drug Distribution in Tissue VII, redaktorzy Conor L. Evans i Kin Foong Chan. SPIE, 2023. http://dx.doi.org/10.1117/12.2648378.
Pełny tekst źródłaBose, Mausumi Bose. "CROSSOVER DESIGNS FOR DRUG DEVELOPMENT". W 41st International Academic Conference, Venice. International Institute of Social and Economic Sciences, 2018. http://dx.doi.org/10.20472/iac.2018.041.009.
Pełny tekst źródłavan der Geest, Ronald, Diana Nijholt i Wil den Hollander. "Clinical Development in Drug Repurposing". W RExPO22. ScienceOpen, 2022. http://dx.doi.org/10.14293/s2199-rexpo22003.v1.
Pełny tekst źródłaRokyta, O. "DRUG-INDUCED MYOCARDITIS". W EDUCATION AND SCIENCE OF TODAY: INTERSECTORAL ISSUES AND DEVELOPMENT OF SCIENCES, chair O. Nishkumay, A. Kovalenko, O. Aleksieienko i K. Cherniaieva. European Scientific Platform, 2021. http://dx.doi.org/10.36074/logos-19.03.2021.v3.52.
Pełny tekst źródłaRaporty organizacyjne na temat "Drug development"
Basu, Sayani. Pharmacognosy in Drug Development. Spring Library, kwiecień 2021. http://dx.doi.org/10.47496/nl.blog.23.
Pełny tekst źródłaSeol, Dai-Wu. TRAIL-Based Anticancer Drug Development. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2002. http://dx.doi.org/10.21236/ada407205.
Pełny tekst źródłaTignor, Gregory H. Drug Development against Viral Diseases. Fort Belvoir, VA: Defense Technical Information Center, luty 1987. http://dx.doi.org/10.21236/ada201949.
Pełny tekst źródłaKrieger, Joshua, Danielle Li i Dimitris Papanikolaou. Missing Novelty in Drug Development. Cambridge, MA: National Bureau of Economic Research, maj 2018. http://dx.doi.org/10.3386/w24595.
Pełny tekst źródłaNovotny, Jaroslav F. Preparation of Bulk Drug for the U.S. Army Drug Development Program. Fort Belvoir, VA: Defense Technical Information Center, marzec 2004. http://dx.doi.org/10.21236/ada425622.
Pełny tekst źródłaNovotny, Jaroslav. Preparation of Bulk Drug for the U.S. Army Drug Development Program. Fort Belvoir, VA: Defense Technical Information Center, marzec 2001. http://dx.doi.org/10.21236/ada392524.
Pełny tekst źródłaNovotny, Jaroslav. Preparation of Chemicals and Bulk Drug Substance for the U.S. Army Drug Development Program. Fort Belvoir, VA: Defense Technical Information Center, marzec 2000. http://dx.doi.org/10.21236/ada382468.
Pełny tekst źródłaNovotny, Jaroslav F. Preparation of Chemicals and Bulk Drug Substances for the U.S. Army Drug Development Program. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1997. http://dx.doi.org/10.21236/adb232976.
Pełny tekst źródłaCollington, Rosie, i William Lazonick. Pricing for Medicine Innovation: A Regulatory Approach to Support Drug Development and Patient Access. Institute for New Economic Thinking Working Paper Series, styczeń 2022. http://dx.doi.org/10.36687/inetwp176.
Pełny tekst źródłaChandra, Amitabh, Craig Garthwaite i Ariel Dora Stern. Characterizing the Drug Development Pipeline for Precision Medicines. Cambridge, MA: National Bureau of Economic Research, listopad 2017. http://dx.doi.org/10.3386/w24026.
Pełny tekst źródła