Gotowa bibliografia na temat „Drug Delivery engineering”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Drug Delivery engineering”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Drug Delivery engineering"
Costa, Pedro F. "Bone Tissue Engineering Drug Delivery". Current Molecular Biology Reports 1, nr 2 (11.04.2015): 87–93. http://dx.doi.org/10.1007/s40610-015-0016-0.
Pełny tekst źródłaYang, Xiaosong, Shizhu Chen, Xiao Liu, Miao Yu i Xiaoguang Liu. "Drug Delivery Based on Nanotechnology for Target Bone Disease". Current Drug Delivery 16, nr 9 (4.12.2019): 782–92. http://dx.doi.org/10.2174/1567201816666190917123948.
Pełny tekst źródłaLiang, Yujie, Li Duan, Jianping Lu i Jiang Xia. "Engineering exosomes for targeted drug delivery". Theranostics 11, nr 7 (2021): 3183–95. http://dx.doi.org/10.7150/thno.52570.
Pełny tekst źródłaSarker, Dipak. "Engineering of Nanoemulsions for Drug Delivery". Current Drug Delivery 2, nr 4 (1.10.2005): 297–310. http://dx.doi.org/10.2174/156720105774370267.
Pełny tekst źródłaLiang, Yujie, Li Duan, Jianping Lu i Jiang Xia. "Engineering exosomes for targeted drug delivery". Theranostics 11, nr 7 (2021): 3183–95. http://dx.doi.org/10.7150/thno.52570.
Pełny tekst źródłaTiwari, Ashutosh. "Drug Delivery & Tissue Engineering Conference". Advanced Materials Letters 8, nr 9 (1.09.2017): 883. http://dx.doi.org/10.5185/amlett.2017/9001.
Pełny tekst źródłaHu, Quanyin, Hunter N. Bomba i Zhen Gu. "Engineering platelet-mimicking drug delivery vehicles". Frontiers of Chemical Science and Engineering 11, nr 4 (15.02.2017): 624–32. http://dx.doi.org/10.1007/s11705-017-1614-6.
Pełny tekst źródłaLadewig, Katharina. "Drug delivery in soft tissue engineering". Expert Opinion on Drug Delivery 8, nr 9 (16.06.2011): 1175–88. http://dx.doi.org/10.1517/17425247.2011.588698.
Pełny tekst źródłaRaemdonck, Koen, Joseph Demeester i Stefaan De Smedt. "Advanced nanogel engineering for drug delivery". Soft Matter 5, nr 4 (2009): 707–15. http://dx.doi.org/10.1039/b811923f.
Pełny tekst źródłaHacisalihzade, S. S. "Control engineering and therapeutic drug delivery". IEEE Control Systems Magazine 9, nr 4 (czerwiec 1989): 44–45. http://dx.doi.org/10.1109/37.24840.
Pełny tekst źródłaRozprawy doktorskie na temat "Drug Delivery engineering"
Albed, Alhnan Mohamed. "Engineering polymethacrylic microparticles for oral drug delivery". Thesis, University of London, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.543262.
Pełny tekst źródłaWendel, Sebastian Oliver. "Bacteria as drug delivery vehicles". Diss., Kansas State University, 2014. http://hdl.handle.net/2097/18804.
Pełny tekst źródłaDepartment of Chemical Engineering
Stefan H. Bossmann
Both chemotherapy for cancer treatment and antibiotic therapy for bacterial infections require systemic applications of the drug and a systemic application is always linked to a number of disadvantages. To circumvent these a targeted drug delivery system was developed. It utilizes the ability of phagocytes from the hosts own immune system to recognize and internalize antigens. Deactivated M. luteus, a non-pathogenic gram positive bacteria was loaded with high concentrations (exceeding the IC50 at least 60 fold in local intracellular concentration) the chemotherapeutics doxorubicin or DP44mt or with the bactericidal chlorhexidine. The modified bacteria is fed to phagocytes (Monocytes/Macrophages or neutrophils) and serves as protective shell for the transporting and targeting phagocyte. The phagocyte is recruited to the tumor site or site of infection and releases the drug along with the processed M. luteus via the exosome pathway upon arrival. The chlorhexidine drug delivery system was successfully tested both in vitro and in vivo, reducing the pathogen count and preventing systemic spread of a F. necrophorum infection in a mouse model. The doxorubicin drug delivery system reduced the viability of 4T1 cancer cells to 20% over the course of four days in vitro.
Bansode, Ratnadeep V. "Functional ionic liquids in crystal engineering and drug delivery". Thesis, University of Bradford, 2016. http://hdl.handle.net/10454/14563.
Pełny tekst źródłaSocial Justice Department, Government of Maharashtra, India.
Bansode, Ratnadeep Vitthal. "Functional ionic liquids in crystal engineering and drug delivery". Thesis, University of Bradford, 2016. http://hdl.handle.net/10454/14563.
Pełny tekst źródłaLee, Heejin 1976. "Drug delivery device for bladder disorders". Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/58169.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (p. 100-104).
Several pathologies associated with the bladder have wide impacts on society. Overactive bladder (OAB) and interstitial cystitis/painful bladder syndrome (IC/PBS) are chronic urological conditions characterized by pain, urinary frequency, and urgency with or without urinary incontinence. The estimated prevalence of OAB and IC/PBS is more than 34 million people in the U.S. alone. The American Cancer Society estimated a total of 68,810 new bladder cancer cases and 14,100 deaths from bladder cancer in the U.S. in 2008. Treatment options include oral medications, transdermal patches and intravesical instillations of therapeutic solutions. Direct intravesical instillation is considered an effective option, especially for those who remain refractory to oral and transdermal formulations due to intolerable side effects and skin irritations, respectively. Intravesical treatment, however, requires repeated instillations due to rapid drug voiding by urination, and the frequent urinary catheterizations involve risk of urinary infection and patient discomfort. An alternative, site-specific local delivery approach was created using a reservoir-based drug delivery device. This novel passive device was designed to release drug in a predetermined manner once inside the bladder. The device also possesses a retention feature to prevent accidental voiding. The device can be implanted into and retrieved from the bladder by a non-surgical cystoscopic procedure.
(cont.) In vivo tests using lidocaine, a local anesthetic used for IC/PBS treatment, showed that a sustained and local treatment to the bladder can be achieved with the device. The lidocaine bladder tissue concentration was found to be a thousand-fold higher than the lidocaine plasma concentration at three and six days in a rabbit model. The device approach has the potential to achieve localized therapy to the bladder while minimizing side effects. Future studies may use the device for other therapeutic agents in the treatment of OAB, IC/PBS, and bladder cancer.
by Heejin Lee.
Ph.D.
Dellal, David (David M. ). "Microneedle gastric retention for drug delivery". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/118020.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 25-28).
Traditional drug delivery methods, such as injection and ingestion, are associated with many challenges, including patient needle-phobia and patient adherence to a medication regimen. Biologic molecules, in particular, must be injected due to degradation by enzymes in the GI tract. Previous scientists have developed a method with the potential to inject macromolecules in the GI tract using microneedles that can implant themselves in the stomach lining; however, they do not provide long-term drug delivery. To create a controlled release micro injection, I hypothesize that a hooked needle will latch onto the muscularis mucosae layer in the stomach and reside.upwards of a week to deliver drugs. A number of trials and simulations have been designed to test the efficacy of this retention mechanism. Coupled with work in the creation of new pharmaceutical formulations, these needles can be loaded with any drug to ensure uptake into the blood stream over the course of several days.
by David Dellal.
S.B.
Chauhan, Vikash Pal Singh. "Re-Engineering the Tumor Microenvironment to Enhance Drug Delivery". Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10405.
Pełny tekst źródłaEngineering and Applied Sciences
Lei, Wang S. "Fabrication of drug delivery MEMS devices". Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/58271.
Pełny tekst źródła"May 2007." Cataloged from PDF version of thesis.
Includes bibliographical references (p. 19).
There is considerable amount of interest in the immediate treatment of personnel involved in high risk situations on the battlefield. A novel approach to drug delivery on the battlefield based on MEMS technology is discussed. By combining three separately fabricated layers, a single implantable drug delivery device capable of delivering up to 100 mm3 of a vasopressin solution was developed. In vitro release of vasopressin was observed and the I-V response of the bubble generator was characterized. Results show that the voltage at the time of release is ~11V while the current is ~0.35A, giving a power output of 3.79W. The time to total release of the drug was less than 2 minutes.
by Wang Lei.
S.B.
Dyer, Robert J. (Robert Joseph) 1977. "Needle-less injection system for drug delivery". Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/89388.
Pełny tekst źródłaForbes, Zachary Graham Barbee Kenneth A. "Magnetizable implants for targeted drug delivery /". Philadelphia, Pa. : Drexel University, 2005. http://dspace.library.drexel.edu/handle/1860/472.
Pełny tekst źródłaKsiążki na temat "Drug Delivery engineering"
Drug delivery: Engineering principles for drug delivery. New York: Oxford University Press, 2001.
Znajdź pełny tekst źródłaNanotechnology and drug delivery. Boca Raton: Taylor & Francis, 2014.
Znajdź pełny tekst źródłaBader, Rebecca A., i David A. Putnam, red. Engineering Polymer Systems for Improved Drug Delivery. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118747896.
Pełny tekst źródłaLamprou, Dimitrios. Emerging Drug Delivery and Biomedical Engineering Technologies. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003224464.
Pełny tekst źródłaSurya, Mallapragada, red. Biomaterials for drug delivery and tissue engineering. Warrendale, Pa: Materials Research Society, 2001.
Znajdź pełny tekst źródłaDan, Luo, i Saltzman W. Mark, red. Synthetic DNA delivery systems. Georgetown, Tex: Landes Bioscience, 2003.
Znajdź pełny tekst źródłaTiwari, Ashutosh, i Atul Tiwari, red. Nanomaterials in Drug Delivery, Imaging, and Tissue Engineering. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118644591.
Pełny tekst źródłaGregoriadis, Gregory. Engineering liposomes for drug delivery: Progress and problems. New York: Elsevier, 1995.
Znajdź pełny tekst źródłaAtul, Tiwari, red. Nanomaterials in drug delivery, imaging, and tissue engineering. Hoboken, New Jersey: John Wiley & Sons, 2013.
Znajdź pełny tekst źródłaNanomedicine and drug delivery. Toronto: Apple Academic Press, 2013.
Znajdź pełny tekst źródłaCzęści książek na temat "Drug Delivery engineering"
Shoyele, Sunday A. "Engineering Protein Particles for Pulmonary Drug Delivery". W Drug Delivery Systems, 149–60. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-210-6_7.
Pełny tekst źródłaRossi, Filippo, Giuseppe Perale i Maurizio Masi. "Introduction: Chemical Engineering and Medicine". W Controlled Drug Delivery Systems, 1–7. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-02288-8_1.
Pełny tekst źródłaKaialy, Waseem, i Ali Nokhodchi. "Particle Engineering for Improved Pulmonary Drug Delivery Through Dry Powder Inhalers". W Pulmonary Drug Delivery, 171–98. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118799536.ch8.
Pełny tekst źródłaDrinnan, Charles T., Laura R. Geuss, Ge Zhang i Laura J. Suggs. "Tissue Engineering in Drug Delivery". W Fundamentals and Applications of Controlled Release Drug Delivery, 533–68. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-0881-9_17.
Pełny tekst źródłaEl-Gendy, Nashwa, Mark M. Bailey i Cory Berkland. "Particle Engineering Technologies for Pulmonary Drug Delivery". W Controlled Pulmonary Drug Delivery, 283–312. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9745-6_13.
Pełny tekst źródłaBader, Rebecca A. "Fundamentals of Drug Delivery". W Engineering Polymer Systems for Improved Drug Delivery, 1–28. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118747896.ch1.
Pełny tekst źródłaMuppalaneni, Srinath, David Mastropietro i Hossein Omidian. "Mucoadhesive Drug Delivery Systems". W Engineering Polymer Systems for Improved Drug Delivery, 319–42. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118747896.ch10.
Pełny tekst źródłaFu, Andrew S., i Horst A. von Recum. "Affinity-Based Drug Delivery". W Engineering Polymer Systems for Improved Drug Delivery, 429–52. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118747896.ch13.
Pełny tekst źródłaWardwell, Patricia R., i Rebecca A. Bader. "Challenges of Drug Delivery". W Engineering Polymer Systems for Improved Drug Delivery, 29–54. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118747896.ch2.
Pełny tekst źródłaSolorio, Luis, Angela Carlson, Haoyan Zhou i Agata A. Exner. "Implantable Drug Delivery Systems". W Engineering Polymer Systems for Improved Drug Delivery, 189–225. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118747896.ch7.
Pełny tekst źródłaStreszczenia konferencji na temat "Drug Delivery engineering"
Shum, Ho Cheung, Tiantian Kong, Zhou Liu i Yang Song. "Engineering Drug Delivery Vehicles With Multiphase Microfluidics". W ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93028.
Pełny tekst źródłaBlanco, Letia, Panos S. Shiakolas, Pranesh B. Aswath, Christopher B. Alberts, Chris Grace, Kyle Godfrey i Drew Patin. "A Thermoresponsive Hydrogel Based Controlled Drug Delivery Device". W ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88564.
Pełny tekst źródłaPang, G. K. H., i DaPeng Qiao. "Iontophoretic drug delivery models". W 2011 1st Middle East Conference on Biomedical Engineering (MECBME). IEEE, 2011. http://dx.doi.org/10.1109/mecbme.2011.5752133.
Pełny tekst źródłaMaloney, John M. "An Implantable Microfabricated Drug Delivery System". W ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43186.
Pełny tekst źródłaShafahi, Maryam, i Parham Piroozan. "Model of Drug Delivery to the Eye". W ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-39438.
Pełny tekst źródłaRong Tong, Li Tang, Qian Yin i Jianjun Cheng. "Drug-polyester conjugated nanoparticles for cancer drug delivery". W 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011. http://dx.doi.org/10.1109/iembs.2011.6092056.
Pełny tekst źródłaKim, Jinho, i Jim S. Chen. "Effect of Inhaling Patterns on Aerosol Drug Delivery: CFD Simulation". W ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66685.
Pełny tekst źródłaClima, L., A. Rotara, C. Cojocaru, M. Pinteala i B. C. Simionescu. "Polymer engineering focusing on DRUG/GENE delivery and tissue engineering". W 2015 E-Health and Bioengineering Conference (EHB). IEEE, 2015. http://dx.doi.org/10.1109/ehb.2015.7391491.
Pełny tekst źródłaLuo, Yangyang, i David K. Mills. "Chitosan-Halloysite Hydrogel Drug Delivery System". W 2016 32nd Southern Biomedical Engineering Conference (SBEC). IEEE, 2016. http://dx.doi.org/10.1109/sbec.2016.55.
Pełny tekst źródłaBellazzi, R. "Predictive fuzzy controllers for drug delivery". W Second International Conference on `Intelligent Systems Engineering'. IEE, 1994. http://dx.doi.org/10.1049/cp:19940635.
Pełny tekst źródła