Spis treści
Gotowa bibliografia na temat „Double Branched Covers”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Double Branched Covers”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Double Branched Covers"
Barbensi, Agnese, Dorothy Buck, Heather A. Harrington i Marc Lackenby. "Double branched covers of knotoids". Communications in Analysis and Geometry 30, nr 5 (2022): 1007–57. http://dx.doi.org/10.4310/cag.2022.v30.n5.a3.
Pełny tekst źródłaCalcut, Jack S., i Jules R. Metcalf-Burton. "Double branched covers of theta-curves". Journal of Knot Theory and Its Ramifications 25, nr 08 (lipiec 2016): 1650046. http://dx.doi.org/10.1142/s0218216516500462.
Pełny tekst źródłaSato, Kouki. "On eigenvalues of double branched covers". Proceedings of the American Mathematical Society 147, nr 6 (1.03.2019): 2707–22. http://dx.doi.org/10.1090/proc/14378.
Pełny tekst źródłaKuznetsov, Alexander, i Alexander Perry. "Homological projective duality for quadrics". Journal of Algebraic Geometry 30, nr 3 (15.01.2021): 457–76. http://dx.doi.org/10.1090/jag/767.
Pełny tekst źródłaLee, Ronnie, i Steven H. Weintraub. "On the homology of double branched covers". Proceedings of the American Mathematical Society 123, nr 4 (1.04.1995): 1263. http://dx.doi.org/10.1090/s0002-9939-1995-1224618-x.
Pełny tekst źródłaDOUROUDIAN, FATEMEH. "COMBINATORIAL KNOT FLOER HOMOLOGY AND DOUBLE BRANCHED COVERS". Journal of Knot Theory and Its Ramifications 22, nr 06 (maj 2013): 1350014. http://dx.doi.org/10.1142/s0218216513500144.
Pełny tekst źródłaRoberts, Lawrence. "On knot Floer homology in double branched covers". Geometry & Topology 17, nr 1 (12.03.2013): 413–67. http://dx.doi.org/10.2140/gt.2013.17.413.
Pełny tekst źródłaPrzytycki, Józef H., i Witold Rosicki. "The Topological Interpretation of the Core Group of a Surface in S4". Canadian Mathematical Bulletin 45, nr 1 (1.03.2002): 131–37. http://dx.doi.org/10.4153/cmb-2002-016-0.
Pełny tekst źródłaDOUROUDIAN, FATEMEH. "ERRATUM: "COMBINATORIAL KNOT FLOER HOMOLOGY AND DOUBLE BRANCHED COVERS"". Journal of Knot Theory and Its Ramifications 22, nr 07 (czerwiec 2013): 1392004. http://dx.doi.org/10.1142/s0218216513920041.
Pełny tekst źródłaAddington, Nicolas M., Edward P. Segal i Eric R. Sharpe. "D-brane probes, branched double covers, and noncommutative resolutions". Advances in Theoretical and Mathematical Physics 18, nr 6 (2014): 1369–436. http://dx.doi.org/10.4310/atmp.2014.v18.n6.a5.
Pełny tekst źródłaRozprawy doktorskie na temat "Double Branched Covers"
Donald, Andrew. "Embedding 3-manifolds in 4-space and link concordance via double branched covers". Thesis, University of Glasgow, 2013. http://theses.gla.ac.uk/4425/.
Pełny tekst źródłaSaint-Criq, Anthony. "Involutions et courbes flexibles réelles sur des surfaces complexes". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES087.
Pełny tekst źródłaThe first part of Hilbert's sixteenth problem deals with the topology of non-singular real plane algebraic curves in the projective plane. As well-known, many topological properties of such curves are shared with the wider class of flexible curves, introduced by O. Viro in 1984. The goal of this thesis is to further investigate the topological origins of the restrictions on real curves in connection with Hilbert's sixteenth problem. We add a natural condition to the definition of flexible curves, namely that they shall intersect an empty real conic Q like algebraic curves do, i.e. all intersections are positive. We see CP(2) as a cylinder over a lens space L(4,1)×R which is compactified by adding RP(2) and Q respectively to the ends, and we use the induced decomposition of S(4)=CP(2)/conj. It is a standard fact that Arnold's surface plays an essential role in the study of curves of even degree. We introduce an analogue of this surface for curves of odd degree. We generalize the notion of flexible curves further to include non-orientable surfaces as well. We say that a flexible curve is of degree m if its self-intersection is m² and it intersects the conic Q transversely in exactly 2m points. Our main result states that for a not necessarily orientable curve of odd degree 2k+1, its number of non-empty ovals is no larger than χ(F)/2-k²+k+1, where χ(F) is the Euler characteristic of F. This upper bound simplifies to k² in the case of a usual flexible curve. We also generalize our result for flexible curves on quadrics, which provides a new restriction, even for algebraic curves. In the introductory chapters, a thorough survey of the classical theory of real plane curves is outlined, both from the real and the complex points of view. Some results regarding the theory of knotted surfaces in 4-manifolds are laid down. More specifically, we review statements involving the Euler class of normal bundles of embedded surfaces. This eventually leads us to consider the non-orientable genus function of a 4-manifold. This forms a non-orientable counterpart of the Thom conjecture, proved by Kronheimer and Mrowka in 1994 in the orientable case. We almost entirely compute this function in the case of CP(2), and we investigate that function on other 4-manifolds. Finally, we digress around the new notion of non-orientable flexible curves, where we survey which known results still hold in that setting. We also focus on algebraic and flexible curves invariant under a holomorphic involution of CP(2), a smaller class of curves introduced by T. Fiedler and called symmetric curves. We give a state of the art, and we formulate a collection of small results results regarding the position of a symmetric plane curve with respect to the elements of symmetry. We also propose a possible approach to generalize Fiedler's congruence p-n≡k² [16], holding for symmetric M-curves of even degree 2k, into one for symmetric (M-1)-curves of even degree
Gonzalez, Pagotto Pablo. "Sur les monoïdes des classes de groupes de tresses". Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM049.
Pełny tekst źródłaHurwitz showed that a branched cover f:M→N of surfaces with branch locus P⊂N determines and is determined, up to inner automorphism of the symmetric group S_m, by a homomorphism π_1(NP, ∗) → S_m . This result reduces the questions of existence and uniqueness of branched covers to combinatorial problems. For a suitable set of generators for π_1(NP, ∗), a representation π_1(NP, ∗) → S_m determines and is determined by a sequence (a_1 , b_1 , . . . , a_g , b_g , z_1, . . . , z_k ) of elements of S_m satisfying [a_1, b_1 ] · · · [a_g , b_g ]z_1 · · · z_k = 1. Thesequence (a_1 , b_1 , . . . , a_g , b_g , z_1 , . . . , z_k ) of permutations is called a Hurwitz system for f .Therefore, to understand the classes of branched covers one need to study the orbits of Hurwitz systems by suitable actions on S^n_m, n = 2g+k. One of such actions is the simultaneous conjugation that leads to the study of the set of double cosets of symmetric groups.In Chapter 1 we bring an exposition of the recent work of Neretin on the multiplicative structure on the set S_∞S^n_∞/S_∞ .In Chapter 2 we aim at extending Neretin’s results to the group B_∞ of finitely supported braids on infinitely many strands. We prove that B_∞B^n_∞/B_∞ admits such a multiplicative structure and explain how this structure is related to similar constructions in Aut(F_∞ ) and GL(∞). We also define a one-parameter generalization of the usual monoid structure on the set of double cosets of GL(∞) and show that the Burau representation provides a functor between the categories of double cosets of B_∞ and GL(∞).The last chapter is dedicated to the study of homomorphisms π_1(NP, ∗) → G, G a discrete group. We give an exposition of the stable classification of such homomorphisms following the work of Samperton and some new results concerning the number of stabilizations necessary to make them equivalent with respect to Hurwitz moves. We also explore a generalization of the classification of finite branched covers by introducing the braid monodromy for surfaces embedded in codimension 2. Following ideas of Kamada we defined a braid monodromy associated to braided surfaces, which correspond to G = B_∞ and study the spherical functions associated to braid group representations
Części książek na temat "Double Branched Covers"
Leuschke, Graham, i Roger Wiegand. "The double branched cover". W Mathematical Surveys and Monographs, 123–40. Providence, Rhode Island: American Mathematical Society, 2012. http://dx.doi.org/10.1090/surv/181/08.
Pełny tekst źródłaGilmore, Robert, i Christophe Letellier. "Peeling Bifurcations". W The Symmetry of Chaos, 87–104. Oxford University PressNew York, NY, 2007. http://dx.doi.org/10.1093/oso/9780195310658.003.0005.
Pełny tekst źródłaMuir, Rory. "The Law". W Gentlemen of Uncertain Fortune, 114–31. Yale University Press, 2019. http://dx.doi.org/10.12987/yale/9780300244311.003.0006.
Pełny tekst źródłaHartley, Trevor C. "Update to Chapter 4: Subject-matter Scope: Civil and Commercial Matters". W Civil Jurisdiction and Judgments in Europe. Oxford University Press, 2017. http://dx.doi.org/10.1093/law/9780191918759.003.0002.
Pełny tekst źródła