Artykuły w czasopismach na temat „DNN architecture”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „DNN architecture”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Roorda, Esther, Seyedramin Rasoulinezhad, Philip H. W. Leong i Steven J. E. Wilton. "FPGA Architecture Exploration for DNN Acceleration". ACM Transactions on Reconfigurable Technology and Systems 15, nr 3 (30.09.2022): 1–37. http://dx.doi.org/10.1145/3503465.
Pełny tekst źródłaElola, Andoni, Elisabete Aramendi, Unai Irusta, Artzai Picón, Erik Alonso, Pamela Owens i Ahamed Idris. "Deep Neural Networks for ECG-Based Pulse Detection during Out-of-Hospital Cardiac Arrest". Entropy 21, nr 3 (21.03.2019): 305. http://dx.doi.org/10.3390/e21030305.
Pełny tekst źródłaTran, Van Duy, Duc Khai Lam i Thi Hong Tran. "Hardware-Based Architecture for DNN Wireless Communication Models". Sensors 23, nr 3 (23.01.2023): 1302. http://dx.doi.org/10.3390/s23031302.
Pełny tekst źródłaTurner, Daniel, Pedro J. S. Cardoso i João M. F. Rodrigues. "Modular Dynamic Neural Network: A Continual Learning Architecture". Applied Sciences 11, nr 24 (18.12.2021): 12078. http://dx.doi.org/10.3390/app112412078.
Pełny tekst źródłaLee, Junghwan, Huanli Sun, Yuxia Liu, Xue Li, Yixin Liu i Myungjun Kim. "State-of-Health Estimation and Anomaly Detection in Li-Ion Batteries Based on a Novel Architecture with Machine Learning". Batteries 9, nr 5 (8.05.2023): 264. http://dx.doi.org/10.3390/batteries9050264.
Pełny tekst źródłaMudgil, Pooja, Pooja Gupta, Iti Mathur i Nisheeth Joshi. "An ontological architecture for context data retrieval and ranking using SVM and DNN". Journal of Information and Optimization Sciences 44, nr 3 (2023): 369–82. http://dx.doi.org/10.47974/jios-1347.
Pełny tekst źródłaElsisi, Mahmoud, i Minh-Quang Tran. "Development of an IoT Architecture Based on a Deep Neural Network against Cyber Attacks for Automated Guided Vehicles". Sensors 21, nr 24 (18.12.2021): 8467. http://dx.doi.org/10.3390/s21248467.
Pełny tekst źródłaP, Shanmugavadivu, Mary Shanthi Rani M, Chitra P, Lakshmanan S, Nagaraja P i Vignesh U. "Bio-Optimization of Deep Learning Network Architectures". Security and Communication Networks 2022 (20.09.2022): 1–11. http://dx.doi.org/10.1155/2022/3718340.
Pełny tekst źródłaKrishnan, Gokul, Sumit K. Mandal, Chaitali Chakrabarti, Jae-Sun Seo, Umit Y. Ogras i Yu Cao. "Impact of On-chip Interconnect on In-memory Acceleration of Deep Neural Networks". ACM Journal on Emerging Technologies in Computing Systems 18, nr 2 (30.04.2022): 1–22. http://dx.doi.org/10.1145/3460233.
Pełny tekst źródłaZhao, Jiaqi, Ming Xu, Yunzhi Chen i Guoliang Xu. "A DNN Architecture Generation Method for DDoS Detection via Genetic Alogrithm". Future Internet 15, nr 4 (26.03.2023): 122. http://dx.doi.org/10.3390/fi15040122.
Pełny tekst źródłaKulkarni, Uday, Shreya B. Devagiri, Rohit B. Devaranavadagi, Sneha Pamali, Nishanth R. Negalli i V. Prabakaran. "Depth Estimation using DNN Architecture and Vision-Based Transformers". ITM Web of Conferences 53 (2023): 02010. http://dx.doi.org/10.1051/itmconf/20235302010.
Pełny tekst źródłaAspri, Maria, Grigorios Tsagkatakis i Panagiotis Tsakalides. "Distributed Training and Inference of Deep Learning Models for Multi-Modal Land Cover Classification". Remote Sensing 12, nr 17 (19.08.2020): 2670. http://dx.doi.org/10.3390/rs12172670.
Pełny tekst źródłaShu, Deqin, Hao Fan i Liang Zhang. "Research on the Overview of Image Processing Architecture of Computer Based Deep Neural Network Accelerator". Journal of Physics: Conference Series 2074, nr 1 (1.11.2021): 012010. http://dx.doi.org/10.1088/1742-6596/2074/1/012010.
Pełny tekst źródłaTao, Zhe, Stephanie Nawas, Jacqueline Mitchell i Aditya V. Thakur. "Architecture-Preserving Provable Repair of Deep Neural Networks". Proceedings of the ACM on Programming Languages 7, PLDI (6.06.2023): 443–67. http://dx.doi.org/10.1145/3591238.
Pełny tekst źródłaKapočiūtė-Dzikienė, Jurgita, Kaspars Balodis i Raivis Skadiņš. "Intent Detection Problem Solving via Automatic DNN Hyperparameter Optimization". Applied Sciences 10, nr 21 (22.10.2020): 7426. http://dx.doi.org/10.3390/app10217426.
Pełny tekst źródłaLi, Guihong, Sumit K. Mandal, Umit Y. Ogras i Radu Marculescu. "FLASH: F ast Neura l A rchitecture S earch with H ardware Optimization". ACM Transactions on Embedded Computing Systems 20, nr 5s (31.10.2021): 1–26. http://dx.doi.org/10.1145/3476994.
Pełny tekst źródłaSingh, Manu, i Vibhakar Shrimali. "Classification of Brain Tumor using Hybrid Deep Learning Approach". BRAIN. Broad Research in Artificial Intelligence and Neuroscience 13, nr 2 (30.06.2022): 308–27. http://dx.doi.org/10.18662/brain/13.2/345.
Pełny tekst źródłaPandey, Pramesh, Noel Daniel Gundi, Prabal Basu, Tahmoures Shabanian, Mitchell Craig Patrick, Koushik Chakraborty i Sanghamitra Roy. "Challenges and Opportunities in Near-Threshold DNN Accelerators around Timing Errors". Journal of Low Power Electronics and Applications 10, nr 4 (16.10.2020): 33. http://dx.doi.org/10.3390/jlpea10040033.
Pełny tekst źródłaGalitsky, Boris, Dmitry Ilvovsky i Saveli Goldberg. "Shaped-Charge Learning Architecture for the Human–Machine Teams". Entropy 25, nr 6 (12.06.2023): 924. http://dx.doi.org/10.3390/e25060924.
Pełny tekst źródłaGreif, Kevin, i Kevin Lannon. "Physics Inspired Deep Neural Networks for Top Quark Reconstruction". EPJ Web of Conferences 245 (2020): 06029. http://dx.doi.org/10.1051/epjconf/202024506029.
Pełny tekst źródłaKanimozhi, G., i P. Shanmugavadivu. "OPTIMIZED DEEP NEURAL NETWORKS ARCHITECTURE MODEL FOR BREAST CANCER DIAGNOSIS". YMER Digital 20, nr 11 (16.11.2021): 161–75. http://dx.doi.org/10.37896/ymer20.11/15.
Pełny tekst źródłaKavitha, S., i J. Manikandan. "Design of a Bottleneck Layered DNN Algorithm for Intrusion Detection System". IRO Journal on Sustainable Wireless Systems 3, nr 4 (16.05.2022): 242–58. http://dx.doi.org/10.36548/jsws.2021.4.004.
Pełny tekst źródłaMei, Linyan, Pouya Houshmand, Vikram Jain, Sebastian Giraldo i Marian Verhelst. "ZigZag: Enlarging Joint Architecture-Mapping Design Space Exploration for DNN Accelerators". IEEE Transactions on Computers 70, nr 8 (1.08.2021): 1160–74. http://dx.doi.org/10.1109/tc.2021.3059962.
Pełny tekst źródłaShamasundar, Bharath, i Ananthanarayanan Chockalingam. "A DNN Architecture for the Detection of Generalized Spatial Modulation Signals". IEEE Communications Letters 24, nr 12 (grudzień 2020): 2770–74. http://dx.doi.org/10.1109/lcomm.2020.3018260.
Pełny tekst źródłaLong, Yun, Daehyun Kim, Edward Lee, Priyabrata Saha, Burhan Ahmad Mudassar, Xueyuan She, Asif Islam Khan i Saibal Mukhopadhyay. "A Ferroelectric FET-Based Processing-in-Memory Architecture for DNN Acceleration". IEEE Journal on Exploratory Solid-State Computational Devices and Circuits 5, nr 2 (grudzień 2019): 113–22. http://dx.doi.org/10.1109/jxcdc.2019.2923745.
Pełny tekst źródłaYu, Ye, Yingmin Li, Shuai Che, Niraj K. Jha i Weifeng Zhang. "Software-Defined Design Space Exploration for an Efficient DNN Accelerator Architecture". IEEE Transactions on Computers 70, nr 1 (1.01.2021): 45–56. http://dx.doi.org/10.1109/tc.2020.2983694.
Pełny tekst źródłaKulkarni, Uday, Abhishek Patil, Rohit Devaranavadagi, Shreya B. Devagiri, Sneha K. Pamali i Raunak Ujawane. "Vision-Based Quality Control Check of Tube Shaft using DNN Architecture". ITM Web of Conferences 53 (2023): 02009. http://dx.doi.org/10.1051/itmconf/20235302009.
Pełny tekst źródłaZhou, Siqi, Mohamed K. Helwa i Angela P. Schoellig. "Deep neural networks as add-on modules for enhancing robot performance in impromptu trajectory tracking". International Journal of Robotics Research 39, nr 12 (11.09.2020): 1397–418. http://dx.doi.org/10.1177/0278364920953902.
Pełny tekst źródłaKao, Hsu-Yu, Shih-Hsu Huang i Wei-Kai Cheng. "Design Framework for ReRAM-Based DNN Accelerators with Accuracy and Hardware Evaluation". Electronics 11, nr 13 (5.07.2022): 2107. http://dx.doi.org/10.3390/electronics11132107.
Pełny tekst źródłaUto, Masaki. "A review of deep-neural automated essay scoring models". Behaviormetrika 48, nr 2 (lipiec 2021): 459–84. http://dx.doi.org/10.1007/s41237-021-00142-y.
Pełny tekst źródłaHosseini, Fateme S., Fanruo Meng, Chengmo Yang, Wujie Wen i Rosario Cammarota. "Tolerating Defects in Low-Power Neural Network Accelerators Via Retraining-Free Weight Approximation". ACM Transactions on Embedded Computing Systems 20, nr 5s (31.10.2021): 1–21. http://dx.doi.org/10.1145/3477016.
Pełny tekst źródłaPham, Tuan Anh, Van Quan Tran i Huong-Lan Thi Vu. "Evolution of Deep Neural Network Architecture Using Particle Swarm Optimization to Improve the Performance in Determining the Friction Angle of Soil". Mathematical Problems in Engineering 2021 (7.05.2021): 1–17. http://dx.doi.org/10.1155/2021/5570945.
Pełny tekst źródłaAhmad, Zeeshan, Adnan Shahid Khan, Kashif Nisar, Iram Haider, Rosilah Hassan, Muhammad Reazul Haque, Seleviawati Tarmizi i Joel J. P. C. Rodrigues. "Anomaly Detection Using Deep Neural Network for IoT Architecture". Applied Sciences 11, nr 15 (30.07.2021): 7050. http://dx.doi.org/10.3390/app11157050.
Pełny tekst źródłaПаршин, А. И., М. Н. Аралов, В. Ф. Барабанов i Н. И. Гребенникова. "RANDOM MULTI-MODAL DEEP LEARNING IN THE PROBLEM OF IMAGE RECOGNITION". ВЕСТНИК ВОРОНЕЖСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА, nr 4 (20.10.2021): 21–26. http://dx.doi.org/10.36622/vstu.2021.17.4.003.
Pełny tekst źródłaQasrina Ann, Nurnajmin, Dwi Pebrianti, Mohd Fadhil Abas i Luhur Bayuaji. "Automated-tuned hyper-parameter deep neural network by using arithmetic optimization algorithm for Lorenz chaotic system". International Journal of Electrical and Computer Engineering (IJECE) 13, nr 2 (1.04.2023): 2167. http://dx.doi.org/10.11591/ijece.v13i2.pp2167-2176.
Pełny tekst źródłaCho, Hyungmin. "RiSA: A Reinforced Systolic Array for Depthwise Convolutions and Embedded Tensor Reshaping". ACM Transactions on Embedded Computing Systems 20, nr 5s (31.10.2021): 1–20. http://dx.doi.org/10.1145/3476984.
Pełny tekst źródłaLei, Hong, Yue Xiao, Yanchun Liang, Dalin Li i Heow Pueh Lee. "DLD: An Optimized Chinese Speech Recognition Model Based on Deep Learning". Complexity 2022 (2.05.2022): 1–8. http://dx.doi.org/10.1155/2022/6927400.
Pełny tekst źródłaWang, Yi-Ren, i Yi-Jyun Wang. "Flutter speed prediction by using deep learning". Advances in Mechanical Engineering 13, nr 11 (listopad 2021): 168781402110622. http://dx.doi.org/10.1177/16878140211062275.
Pełny tekst źródłaPedram, Ardavan, Ali Shafie Ardestani, Ling Li, Hamzah Abdelaziz, Jun Fang i Joseph Hassoun. "Algorithm/architecture solutions to improve beyond uniform quantization in embedded DNN accelerators". Journal of Systems Architecture 126 (maj 2022): 102454. http://dx.doi.org/10.1016/j.sysarc.2022.102454.
Pełny tekst źródłaGowda, Kavitha Malali Vishveshwarappa, Sowmya Madhavan, Stefano Rinaldi, Parameshachari Bidare Divakarachari i Anitha Atmakur. "FPGA-Based Reconfigurable Convolutional Neural Network Accelerator Using Sparse and Convolutional Optimization". Electronics 11, nr 10 (22.05.2022): 1653. http://dx.doi.org/10.3390/electronics11101653.
Pełny tekst źródłaNabavinejad, Seyed Morteza, i Sherief Reda. "BayesTuner: Leveraging Bayesian Optimization For DNN Inference Configuration Selection". IEEE Computer Architecture Letters 20, nr 2 (1.07.2021): 166–70. http://dx.doi.org/10.1109/lca.2021.3123695.
Pełny tekst źródłaKwon, Hyoukjun, Michael Pellauer, Angshuman Parashar i Tushar Krishna. "Flexion: A Quantitative Metric for Flexibility in DNN Accelerators". IEEE Computer Architecture Letters 20, nr 1 (1.01.2021): 1–4. http://dx.doi.org/10.1109/lca.2020.3044607.
Pełny tekst źródłaAnahid Robert Safavi, Alberto G. Perotti, Branislav M. Popovic, Mahdi Boloursaz Mashhadi i Deniz G�nd�z. "Deep extended feedback codes". ITU Journal on Future and Evolving Technologies 2, nr 6 (13.09.2021): 33–41. http://dx.doi.org/10.52953/snlm1743.
Pełny tekst źródłaMateen, Muhammad, Junhao Wen, Nasrullah, Sun Song i Zhouping Huang. "Fundus Image Classification Using VGG-19 Architecture with PCA and SVD". Symmetry 11, nr 1 (20.12.2018): 1. http://dx.doi.org/10.3390/sym11010001.
Pełny tekst źródłaWang, Jihong, Hao Wang, Xiaodan Wang i Huiyou Chang. "Predicting Drug-target Interactions via FM-DNN Learning". Current Bioinformatics 15, nr 1 (6.02.2020): 68–76. http://dx.doi.org/10.2174/1574893614666190227160538.
Pełny tekst źródłaZhang, Tunhou, Hsin-Pai Cheng, Zhenwen Li, Feng Yan, Chengyu Huang, Hai Li i Yiran Chen. "AutoShrink: A Topology-Aware NAS for Discovering Efficient Neural Architecture". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 04 (3.04.2020): 6829–36. http://dx.doi.org/10.1609/aaai.v34i04.6163.
Pełny tekst źródłaMunoz-Martinez, Francisco, Jose L. Abellan, Manuel E. Acacio i Tushar Krishna. "STONNE: Enabling Cycle-Level Microarchitectural Simulation for DNN Inference Accelerators". IEEE Computer Architecture Letters 20, nr 2 (1.07.2021): 122–25. http://dx.doi.org/10.1109/lca.2021.3097253.
Pełny tekst źródłaJang, Yongjoo, Sejin Kim, Daehoon Kim, Sungjin Lee i Jaeha Kung. "Deep Partitioned Training From Near-Storage Computing to DNN Accelerators". IEEE Computer Architecture Letters 20, nr 1 (1.01.2021): 70–73. http://dx.doi.org/10.1109/lca.2021.3081752.
Pełny tekst źródłaLin, Shaoxiong, Wangyou Zhang i Yanmin Qian. "Two-Stage Single-Channel Speech Enhancement with Multi-Frame Filtering". Applied Sciences 13, nr 8 (14.04.2023): 4926. http://dx.doi.org/10.3390/app13084926.
Pełny tekst źródłaXiao, Dongwei, Zhibo Liu, Yuanyuan Yuan, Qi Pang i Shuai Wang. "Metamorphic Testing of Deep Learning Compilers". ACM SIGMETRICS Performance Evaluation Review 50, nr 1 (20.06.2022): 65–66. http://dx.doi.org/10.1145/3547353.3522655.
Pełny tekst źródła