Gotowa bibliografia na temat „DNN architecture”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „DNN architecture”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "DNN architecture"
Roorda, Esther, Seyedramin Rasoulinezhad, Philip H. W. Leong i Steven J. E. Wilton. "FPGA Architecture Exploration for DNN Acceleration". ACM Transactions on Reconfigurable Technology and Systems 15, nr 3 (30.09.2022): 1–37. http://dx.doi.org/10.1145/3503465.
Pełny tekst źródłaElola, Andoni, Elisabete Aramendi, Unai Irusta, Artzai Picón, Erik Alonso, Pamela Owens i Ahamed Idris. "Deep Neural Networks for ECG-Based Pulse Detection during Out-of-Hospital Cardiac Arrest". Entropy 21, nr 3 (21.03.2019): 305. http://dx.doi.org/10.3390/e21030305.
Pełny tekst źródłaTran, Van Duy, Duc Khai Lam i Thi Hong Tran. "Hardware-Based Architecture for DNN Wireless Communication Models". Sensors 23, nr 3 (23.01.2023): 1302. http://dx.doi.org/10.3390/s23031302.
Pełny tekst źródłaTurner, Daniel, Pedro J. S. Cardoso i João M. F. Rodrigues. "Modular Dynamic Neural Network: A Continual Learning Architecture". Applied Sciences 11, nr 24 (18.12.2021): 12078. http://dx.doi.org/10.3390/app112412078.
Pełny tekst źródłaLee, Junghwan, Huanli Sun, Yuxia Liu, Xue Li, Yixin Liu i Myungjun Kim. "State-of-Health Estimation and Anomaly Detection in Li-Ion Batteries Based on a Novel Architecture with Machine Learning". Batteries 9, nr 5 (8.05.2023): 264. http://dx.doi.org/10.3390/batteries9050264.
Pełny tekst źródłaMudgil, Pooja, Pooja Gupta, Iti Mathur i Nisheeth Joshi. "An ontological architecture for context data retrieval and ranking using SVM and DNN". Journal of Information and Optimization Sciences 44, nr 3 (2023): 369–82. http://dx.doi.org/10.47974/jios-1347.
Pełny tekst źródłaElsisi, Mahmoud, i Minh-Quang Tran. "Development of an IoT Architecture Based on a Deep Neural Network against Cyber Attacks for Automated Guided Vehicles". Sensors 21, nr 24 (18.12.2021): 8467. http://dx.doi.org/10.3390/s21248467.
Pełny tekst źródłaP, Shanmugavadivu, Mary Shanthi Rani M, Chitra P, Lakshmanan S, Nagaraja P i Vignesh U. "Bio-Optimization of Deep Learning Network Architectures". Security and Communication Networks 2022 (20.09.2022): 1–11. http://dx.doi.org/10.1155/2022/3718340.
Pełny tekst źródłaKrishnan, Gokul, Sumit K. Mandal, Chaitali Chakrabarti, Jae-Sun Seo, Umit Y. Ogras i Yu Cao. "Impact of On-chip Interconnect on In-memory Acceleration of Deep Neural Networks". ACM Journal on Emerging Technologies in Computing Systems 18, nr 2 (30.04.2022): 1–22. http://dx.doi.org/10.1145/3460233.
Pełny tekst źródłaZhao, Jiaqi, Ming Xu, Yunzhi Chen i Guoliang Xu. "A DNN Architecture Generation Method for DDoS Detection via Genetic Alogrithm". Future Internet 15, nr 4 (26.03.2023): 122. http://dx.doi.org/10.3390/fi15040122.
Pełny tekst źródłaRozprawy doktorskie na temat "DNN architecture"
Azam, Md Ali. "Energy Efficient Spintronic Device for Neuromorphic Computation". VCU Scholars Compass, 2019. https://scholarscompass.vcu.edu/etd/6036.
Pełny tekst źródłaRiera, Villanueva Marc. "Low-power accelerators for cognitive computing". Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/669828.
Pełny tekst źródłaLes xarxes neuronals profundes (DNN) han aconseguit un èxit enorme en aplicacions cognitives, i són especialment eficients en problemes de classificació i presa de decisions com ara reconeixement de veu o traducció automàtica. Els dispositius mòbils depenen cada cop més de les DNNs per entendre el món. Els telèfons i rellotges intel·ligents, o fins i tot els cotxes, realitzen diàriament tasques discriminatòries com ara el reconeixement de rostres o objectes. Malgrat la popularitat creixent de les DNNs, el seu funcionament en sistemes mòbils presenta diversos reptes: proporcionar una alta precisió i rendiment amb un petit pressupost de memòria i energia. Les DNNs modernes consisteixen en milions de paràmetres que requereixen recursos computacionals i de memòria enormes i, per tant, no es poden utilitzar directament en sistemes de baixa potència amb recursos limitats. L'objectiu d'aquesta tesi és abordar aquests problemes i proposar noves solucions per tal de dissenyar acceleradors eficients per a sistemes de computació cognitiva basats en DNNs. En primer lloc, ens centrem en optimitzar la inferència de les DNNs per a aplicacions de processament de seqüències. Realitzem una anàlisi de la similitud de les entrades entre execucions consecutives de les DNNs. A continuació, proposem DISC, un accelerador que implementa una tècnica de càlcul diferencial, basat en l'alt grau de semblança de les entrades, per reutilitzar els càlculs de l'execució anterior, en lloc de computar tota la xarxa. Observem que, de mitjana, més del 60% de les entrades de qualsevol capa de les DNNs utilitzades presenten canvis menors respecte a l'execució anterior. Evitar els accessos de memòria i càlculs d'aquestes entrades comporta un estalvi d'energia del 63% de mitjana. En segon lloc, proposem optimitzar la inferència de les DNNs basades en capes FC. Primer analitzem el nombre de pesos únics per neurona d'entrada en diverses xarxes. Aprofitant optimitzacions comunes com la quantització lineal, observem un nombre molt reduït de pesos únics per entrada en diverses capes FC de DNNs modernes. A continuació, per millorar l'eficiència energètica del càlcul de les capes FC, presentem CREW, un accelerador que implementa un eficient mecanisme de reutilització de càlculs i emmagatzematge dels pesos. CREW redueix el nombre de multiplicacions i proporciona estalvis importants en l'ús de la memòria. Avaluem CREW en un conjunt divers de DNNs modernes. CREW proporciona, de mitjana, una millora en rendiment de 2,61x i un estalvi d'energia de 2,42x. En tercer lloc, proposem un mecanisme per optimitzar la inferència de les RNNs. Les cel·les de les xarxes recurrents realitzen multiplicacions element a element de les activacions de diferents comportes, sigmoides i tanh sent les funcions habituals d'activació. Realitzem una anàlisi dels valors de les funcions d'activació i mostrem que una fracció significativa està saturada cap a zero o un en un conjunto d'RNNs populars. A continuació, proposem CGPA per podar dinàmicament les activacions de les RNNs a una granularitat gruixuda. CGPA evita l'avaluació de neurones senceres cada vegada que les sortides de neurones parelles estan saturades. CGPA redueix significativament la quantitat de càlculs i accessos a la memòria, aconseguint en mitjana un 12% de millora en el rendiment i estalvi d'energia. Finalment, en l'última contribució d'aquesta tesi ens centrem en metodologies de poda estàtica de les DNNs. La poda redueix la petjada de memòria i el treball computacional mitjançant l'eliminació de connexions o neurones redundants. Tanmateix, mostrem que els esquemes de poda previs fan servir un procés iteratiu molt llarg que requereix l'entrenament de les DNNs moltes vegades per ajustar els paràmetres de poda. A continuació, proposem un esquema de poda basat en l'anàlisi de components principals i la importància relativa de les connexions de cada neurona que optimitza automàticament el DNN optimitzat en un sol tret sense necessitat de sintonitzar manualment múltiples paràmetres
Heath, Felicity. "Variable architecture polymers for DNA delivery". Thesis, University of Nottingham, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.539162.
Pełny tekst źródłaDing, Ke. "Architectures of DNA block copolymers". [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=98214217X.
Pełny tekst źródłaMarriott, Hannah. "Genome architecture and DNA replication in Haloferax volcanii". Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/50190/.
Pełny tekst źródłaWei, Diming. "The beauty of DNA architecture : the design and applications in DNA nanotechnology /". View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?CBME%202009%20WEI.
Pełny tekst źródłaSchilter, David. "Synthesis and DNA-binding of Metallocyclic Architectures". Thesis, The University of Sydney, 2009. http://hdl.handle.net/2123/5317.
Pełny tekst źródłaSchilter, David. "Synthesis and DNA-binding of Metallocyclic Architectures". University of Sydney, 2009. http://hdl.handle.net/2123/5317.
Pełny tekst źródłaA new family of cationic N-heterocyclic ligand derivatives was prepared and characterised. Among these compounds are halide salts of the dications [Y(spacer)Y]2+, each of which comprise two N heterocyclic donor groups (Y = 4,4′-bipy, pyz, apyz, apym) linked by a conformationally flexible spacer such as (CH2)n, α,α′-xylylene, 2,6-lutidylene or thiabicyclo[3.3.1]nonane-2,6 diyl. The diquaternary halide salts were converted to NO3- and PF6- salts, and interaction of these bridging ligands with labile palladium(II) and platinum(II) precursors afforded several multinuclear complexes. Bis(4,4′-bipyridinium) dications were incorporated into the dinuclear macrocycles [M2(2,2′ bipy)2{4,4′ bipy(CH2)n4,4′-bipy}2]8+ (M = Pd, Pt; n = 4, 6), cis [Pd2Cl4{4,4′ bipy(CH2)34,4′-bipy}2]4+, [Pt2(dppp)2{4,4′-bipy(1,2-xylylene)4,4′-bipy}2]8+ and cis-[Pt2Cl4{4,4′-bipy(1,2-xylylene)4,4′-bipy}2]4+. While bis(pyrazinium) analogues were unreactive towards the palladium(II) and platinum(II) precursors, the doubly deprotonated bis(3 aminopyrazinium) and bis(2 aminopyrimidinium) derivatives served as charge-neutral quadruply-bridging ligands in the complexes [Pt4(2,2′ bipy)4{apyz(CH2)6apyz–2H}2]8+ and [Pt4(2,2′ bipy)4{apym(CH2)5apym–2H}2]8+, both of which feature Pt(II). Pt(II) interactions. Larger species formed when the diamine O,O′-bis(2-aminoethyl)octadeca(ethylene glycol) (PEGda) was treated with cis dinitratopalladium(II) and platinum(II) precursors. The resulting complexes [M(N,N)(PEGda)]2+ (M = Pd, Pt; N,N = 2,2′-bipy, en, tmeda) possessed great size (62 membered chelate rings) and aqueous solubility. DNA-binding studies were conducted with selected complexes in order to investigate the types of interactions these species might participate in. Equimolar mixtures containing either the 16mer duplex DNA D2 or the single strand D2a and palladium(II)/platinum(II) complexes were prepared and analysed by negative-ion ESI MS. Studies of D2/Pd(II) mixtures suggested extensive fragmentation was occuring, and the use of [Pd(tmeda)(PEGda)]2+ and [Pd2(2,2′-bipy)2{4,4′-bipy(CH2)44,4′-bipy}2]8+ resulted in D2 adducts of [Pd(tmeda)]2+ and [4,4′-bipy(CH2)44,4′-bipy]2+, respectively. Decomposition also occurred when D2a was used, although 1 : 1 adducts were observed with [Pd(tmeda)(PEGda)]2+, [Pd(2,2′ bipy)(PEGda)]2+ and [Pd2(2,2′-bipy)2{4,4′-bipy(CH2)44,4′-bipy}2]8+. The low intensities of these adducts indicated that they are unstable towards ESI MS. Analogous ESI-MS experiments using platinum(II) derivatives were performed and, in contrast to those with palladium(II), indicated that the complexes remained largely intact. ESI-MS analysis of D2/Pt(II) mixtures allowed for the detection of 1 : 1 D2 adducts of [Pt(en)(PEGda)]2+, [Pt(tmeda)(PEGda)]2+ and [Pt2(2,2′-bipy)2{4,4′-bipy(CH2)44,4′-bipy}2]8+. Intensities of the adduct ions suggested the greater charge and aryl surface area allow the dinuclear species to bind D2 most strongly. Both [Pt(2,2′-bipy)(Mebipy)2]4+ and [Pt(2,2′ bipy)(NH3)2]2+ gave rise to 1 : 2 adducts of D2, although the latter was found to be a weaker binder, perhaps owing to its lower charge. Data obtained using 1 : 5 (D2 : complex) mixtures were consistent with the results above and suggested that D2 can bind more molecules of daunomycin than any of the platinum(II) species. Analyses of D2a/Pt(II) mixtures gave results similar to those obtained with D2, although fragmentation was more pronounced, indicating that the nucleobases in D2a play more significant roles in mediating decomposition than those in D2, in which they are paired in a complementary manner. Investigations into the effects of selected platinum(II) complexes on the thermal denaturation of calf-thymus DNA (CT-DNA) in solution were conducted. Both [Pt2(2,2′ bipy)2{4,4′-bipy(CH2)64,4′-bipy}2]8+ and [Pt(2,2′-bipy)(Mebipy)2]4+ greatly stabilised CT-DNA, most likely by intercalation. In contrast, [Pt(tmeda)(PEGda)]2+ and [Pt(en)(PEGda)]2+ (as well as PEGda) caused negligible changes in melting temperature (∆Tm), suggesting that these interact weakly with CT-DNA. Data for [Pt(2,2′ bipy)(PEGda)]2+ and [Pt(2,2′-bipy)(NH3)2]2+ indicated that these species perhaps intercalate CT-DNA, with similar ∆Tm values for both complexes implying that PEGda does not play a major role in binding. While findings from ESI-MS experiments were similar to those from the thermal denaturation experiments, discrepancies between results from the two methods could be found. In particular, fragmentation of cyclic species during ESI-MS caused the binding strength of the species to be underestimated when this method was employed.
Yu, Zhiling. "Interactions and architecture of human MCM proteins in vitro and in vivo /". View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?BICH%202003%20YU.
Pełny tekst źródłaIncludes bibliographical references (leaves 118-137). Also available in electronic version. Access restricted to campus users.
van, der Merwe Mariè. "Enzyme architecture and flexibility affect DNA topoisomerase I function". View the abstract Download the full-text PDF version, 2007. http://etd.utmem.edu/ABSTRACTS/2007-026-van_der_Merwe-Index.html.
Pełny tekst źródłaTitle from title page screen (viewed on July 29, 2008). Research advisor: Mary-Ann Bjornsti, Ph.D. Document formatted into pages (xiii, 175 p. : ill.). Vita. Abstract. Includes bibliographical references (p. 161-175).
Książki na temat "DNN architecture"
Charre, Alain. Dan Graham. Paris: Dis Voir, 1995.
Znajdź pełny tekst źródłaCharre, Alain. Dan Graham. Paris: Editions Dis voir, 1995.
Znajdź pełny tekst źródła1944-, Budihardjo Eko, red. Pengaruh budaya dan iklim dalam perancangan arsitektur. Bandung: Alumni, 2009.
Znajdź pełny tekst źródła1944-, Budihardjo Eko, red. Pengaruh budaya dan iklim dalam perancangan arsitektur. Bandung: Alumni, 2009.
Znajdź pełny tekst źródłaTiantian, Xu, red. Architecture as transformer: DnA-Design and Architecture, Beijing : projects 2004-2018. Berlin: Aedes, 2018.
Znajdź pełny tekst źródłaÜber den Minderwertigkeitskomplex der deutschen Architektur: Ursachen einer Kontroverse. Göttingen: Optimus Verlag, 2010.
Znajdź pełny tekst źródłaMayr, Fingerle Christoph, red. Neues Bauen in den Alpen: Architekturpreis 2006 = Architettura alpina contemporanea : premio d'architettura 2006 = New Alpine architecture : architectural prize 2006. Basel: Birkhäuser, 2008.
Znajdź pełny tekst źródłavan, Boven Cees, Freijser Victor i Vaillant Christiaan, red. Gids van de moderne architectuur in Den Haag =: Guide to modern architecture in The Hague. Wyd. 2. Den Haag: Uitgeverij Ulysses, 1998.
Znajdź pełny tekst źródła1931-, Böhm Elisabeth, red. Gottfried Böhm: Bauten und Projekte : Auszug aus den Jahren 1985-2000 = Buildings and projects : a selection of works 1985-2000. Tübingen: Wasmuth, 2001.
Znajdź pełny tekst źródłaFoundation, Solomon R. Guggenheim, red. Dan Flavin: The architecture of light. New York: The Solomon R. Guggenheim Foundation, 1999.
Znajdź pełny tekst źródłaCzęści książek na temat "DNN architecture"
Wang, Liang, i Jianxin Zhao. "Deep Neural Networks". W Architecture of Advanced Numerical Analysis Systems, 121–47. Berkeley, CA: Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-8853-5_5.
Pełny tekst źródłaBartz-Beielstein, Thomas, Sowmya Chandrasekaran i Frederik Rehbach. "Case Study III: Tuning of Deep Neural Networks". W Hyperparameter Tuning for Machine and Deep Learning with R, 235–69. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5170-1_10.
Pełny tekst źródłaHan, Donghyeon, i Hoi-Jun Yoo. "An Overview of Energy-Efficient DNN Training Processors". W On-Chip Training NPU - Algorithm, Architecture and SoC Design, 183–210. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-34237-0_8.
Pełny tekst źródłaAnjum, Muhammad, Moizzah Asif i Jonathan Williams. "Towards an Optimal Deep Neural Network for SOC Estimation of Electric-Vehicle Lithium-Ion Battery Cells". W Springer Proceedings in Energy, 11–18. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_2.
Pełny tekst źródłaPontes, Felipe Arruda, i Edward Curry. "Cloud-Edge Microservice Architecture for DNN-based Distributed Multimedia Event Processing". W Communications in Computer and Information Science, 65–72. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71906-7_6.
Pełny tekst źródłaHan, Donghyeon, i Hoi-Jun Yoo. "HNPU-V1: An Adaptive DNN Training Processor Utilizing Stochastic Dynamic Fixed-Point and Active Bit-Precision Searching". W On-Chip Training NPU - Algorithm, Architecture and SoC Design, 121–61. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-34237-0_6.
Pełny tekst źródłaHan, Donghyeon, i Hoi-Jun Yoo. "HNPU-V2: An Energy-Efficient DNN Training Processor for Robust Object Detection with Real-World Environmental Adaptation". W On-Chip Training NPU - Algorithm, Architecture and SoC Design, 163–82. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-34237-0_7.
Pełny tekst źródłaSinha, Bam Bahadur, Gurvinder Singh Yadav i Sagar Badrish Kudkelwar. "Modified-PIP with Deep Neural Network (DNN) Architecture: A Coherent Recommendation Framework for Capturing User Behaviour". W Studies in Big Data, 121–40. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10869-3_7.
Pełny tekst źródłaAlsuhli, Ghada, Vasilis Sakellariou, Hani Saleh, Mahmoud Al-Qutayri, Baker Mohammad i Thanos Stouraitis. "BFP for DNN Architectures". W Synthesis Lectures on Engineering, Science, and Technology, 61–72. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-38133-1_6.
Pełny tekst źródłaAlsuhli, Ghada, Vasilis Sakellariou, Hani Saleh, Mahmoud Al-Qutayri, Baker Mohammad i Thanos Stouraitis. "Posit for DNN Architectures". W Synthesis Lectures on Engineering, Science, and Technology, 81–88. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-38133-1_8.
Pełny tekst źródłaStreszczenia konferencji na temat "DNN architecture"
Krishnan, Gokul, Zhenyu Wang, Li Yang, Injune Yeo, Jian Meng, Rajiv V. Joshi, Nathaniel C. Cady, Deliang Fan, Jae-Sun Seo i Yu Cao. "IMC Architecture for Robust DNN Acceleration". W 2022 IEEE 16th International Conference on Solid-State & Integrated Circuit Technology (ICSICT). IEEE, 2022. http://dx.doi.org/10.1109/icsict55466.2022.9963165.
Pełny tekst źródłaYemini, Yochai, Shlomo E. Chazan, Jacob Goldberger i Sharon Gannot. "A Composite DNN Architecture for Speech Enhancement". W ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020. http://dx.doi.org/10.1109/icassp40776.2020.9053821.
Pełny tekst źródłaKim, Jinhan, Nargiz Humbatova, Gunel Jahangirova, Paolo Tonella i Shin Yoo. "Repairing DNN Architecture: Are We There Yet?" W 2023 IEEE Conference on Software Testing, Verification and Validation (ICST). IEEE, 2023. http://dx.doi.org/10.1109/icst57152.2023.00030.
Pełny tekst źródłaHe, Zhezhi. "Session details: Architecture for DNN Acceleration (Virtual)". W ICCAD '22: IEEE/ACM International Conference on Computer-Aided Design. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3578439.
Pełny tekst źródłaYazdani, Reza, Marc Riera, Jose-Maria Arnau i Antonio Gonzalez. "The Dark Side of DNN Pruning". W 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA). IEEE, 2018. http://dx.doi.org/10.1109/isca.2018.00071.
Pełny tekst źródłaKwon, Hyoukjun, Liangzhen Lai, Michael Pellauer, Tushar Krishna, Yu-Hsin Chen i Vikas Chandra. "Heterogeneous Dataflow Accelerators for Multi-DNN Workloads". W 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2021. http://dx.doi.org/10.1109/hpca51647.2021.00016.
Pełny tekst źródłaCai, Chengtao, i Dongning Guo. "CNN-Self-Attention-DNN Architecture For Mandarin Recognition". W 2020 Chinese Control And Decision Conference (CCDC). IEEE, 2020. http://dx.doi.org/10.1109/ccdc49329.2020.9164333.
Pełny tekst źródłaGeng, Wei, Dongyu Liu i Xiu Cao. "A Power Anomaly Detection Architecture Based on DNN". W the 3rd International Conference. New York, New York, USA: ACM Press, 2019. http://dx.doi.org/10.1145/3331453.3361641.
Pełny tekst źródłaGlint, Tom, Chandan Kumar Jha, Manu Awasthi i Joycee Mekie. "Analysis of Quantization Across DNN Accelerator Architecture Paradigms". W 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2023. http://dx.doi.org/10.23919/date56975.2023.10136899.
Pełny tekst źródłaJanfaza, Vahid, Kevin Weston, Moein Razavi, Shantanu Mandal, Farabi Mahmud, Alex Hilty i Abdullah Muzahid. "MERCURY: Accelerating DNN Training By Exploiting Input Similarity". W 2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2023. http://dx.doi.org/10.1109/hpca56546.2023.10071051.
Pełny tekst źródłaRaporty organizacyjne na temat "DNN architecture"
Tayeb, Shahab. Taming the Data in the Internet of Vehicles. Mineta Transportation Institute, styczeń 2022. http://dx.doi.org/10.31979/mti.2022.2014.
Pełny tekst źródłaBenner, Steven A. Design Automation Software for DNA-Based Nano-Sensor Architecture. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2012. http://dx.doi.org/10.21236/ada582334.
Pełny tekst źródłaClark, Paul C., Timothy E. Lavin, Cynthia E. Irvine i David J. Shifflett. DNS and Multilevel Secure Networks: Architectures and Recommendations. Fort Belvoir, VA: Defense Technical Information Center, luty 2009. http://dx.doi.org/10.21236/ada498511.
Pełny tekst źródłaPeterson, J., O. Kolkman, H. Tschofenig i B. Aboba. Architectural Considerations on Application Features in the DNS. RFC Editor, październik 2013. http://dx.doi.org/10.17487/rfc6950.
Pełny tekst źródłaMacula, Anthony, Russell Deaton i Junghuei Chen. A Two-Dimensional Deoxyribonucleic Acid (DNA) Matrix Based Biomolecular Computing and Memory Architecture. Fort Belvoir, VA: Defense Technical Information Center, luty 2009. http://dx.doi.org/10.21236/ada494650.
Pełny tekst źródłaYu, Haichao, Haoxiang Li, Honghui Shi, Thomas S. Huang i Gang Hua. Any-Precision Deep Neural Networks. Web of Open Science, grudzień 2020. http://dx.doi.org/10.37686/ejai.v1i1.82.
Pełny tekst źródłaJoel, Daniel M., Steven J. Knapp i Yaakov Tadmor. Genomic Approaches for Understanding Virulence and Resistance in the Sunflower-Orobanche Host-Parasite Interaction. United States Department of Agriculture, sierpień 2011. http://dx.doi.org/10.32747/2011.7592655.bard.
Pełny tekst źródłaCrowley, David E., Dror Minz i Yitzhak Hadar. Shaping Plant Beneficial Rhizosphere Communities. United States Department of Agriculture, lipiec 2013. http://dx.doi.org/10.32747/2013.7594387.bard.
Pełny tekst źródłaWeller, Joel I., Derek M. Bickhart, Micha Ron, Eyal Seroussi, George Liu i George R. Wiggans. Determination of actual polymorphisms responsible for economic trait variation in dairy cattle. United States Department of Agriculture, styczeń 2015. http://dx.doi.org/10.32747/2015.7600017.bard.
Pełny tekst źródłaEshed-Williams, Leor, i Daniel Zilberman. Genetic and cellular networks regulating cell fate at the shoot apical meristem. United States Department of Agriculture, styczeń 2014. http://dx.doi.org/10.32747/2014.7699862.bard.
Pełny tekst źródła