Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: DNA systems.

Artykuły w czasopismach na temat „DNA systems”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „DNA systems”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Chakarov, Stoyan, Rumena Petkova i George Russev. "DNA repair systems". BioDiscovery, nr 13 (22.09.2014): 2. http://dx.doi.org/10.7750/biodiscovery.2014.13.2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Teo, Yin Nah, i Eric T. Kool. "DNA-Multichromophore Systems". Chemical Reviews 112, nr 7 (16.03.2012): 4221–45. http://dx.doi.org/10.1021/cr100351g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Kaina, Bernd. "DNA repair systems". Toxicology Letters 164 (wrzesień 2006): S320. http://dx.doi.org/10.1016/j.toxlet.2006.07.328.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Rao, D. N., i Yedu Prasad. "DNA repair systems". Resonance 21, nr 10 (październik 2016): 925–36. http://dx.doi.org/10.1007/s12045-016-0401-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Walker, G. C. "Inducible DNA Repair Systems". Annual Review of Biochemistry 54, nr 1 (czerwiec 1985): 425–57. http://dx.doi.org/10.1146/annurev.bi.54.070185.002233.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Aerts, Diederik, i Marek Czachor. "Abstract DNA-type systems". Nonlinearity 19, nr 3 (31.01.2006): 575–89. http://dx.doi.org/10.1088/0951-7715/19/3/003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Luo, Dan, i W. Mark Saltzman. "Synthetic DNA delivery systems". Nature Biotechnology 18, nr 1 (styczeń 2000): 33–37. http://dx.doi.org/10.1038/71889.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Ma, Ke, Alexander W. Harris i Jennifer N. Cha. "DNA assembled photoactive systems". Current Opinion in Colloid & Interface Science 38 (listopad 2018): 18–29. http://dx.doi.org/10.1016/j.cocis.2018.08.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Handelsman, Jo. "Call for Papers: Unique Model Systems". DNA and Cell Biology 27, nr 6 (czerwiec 2008): 287. http://dx.doi.org/10.1089/dna.2008.1504.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Jolly, Pawan, Pedro Estrela i Michael Ladomery. "Oligonucleotide-based systems: DNA, microRNAs, DNA/RNA aptamers". Essays in Biochemistry 60, nr 1 (30.06.2016): 27–35. http://dx.doi.org/10.1042/ebc20150004.

Pełny tekst źródła
Streszczenie:
There are an increasing number of applications that have been developed for oligonucleotide-based biosensing systems in genetics and biomedicine. Oligonucleotide-based biosensors are those where the probe to capture the analyte is a strand of deoxyribonucleic acid (DNA), ribonucleic acid (RNA) or a synthetic analogue of naturally occurring nucleic acids. This review will shed light on various types of nucleic acids such as DNA and RNA (particularly microRNAs), their role and their application in biosensing. It will also cover DNA/RNA aptamers, which can be used as bioreceptors for a wide range of targets such as proteins, small molecules, bacteria and even cells. It will also highlight how the invention of synthetic oligonucleotides such as peptide nucleic acid (PNA) or locked nucleic acid (LNA) has pushed the limits of molecular biology and biosensor development to new perspectives. These technologies are very promising albeit still in need of development in order to bridge the gap between the laboratory-based status and the reality of biomedical applications.
Style APA, Harvard, Vancouver, ISO itp.
11

Bonincontro, A., R. Caneva i F. Pedone. "Hydration of aminoacid-DNA and protein-DNA systems". Biochemical Pharmacology 37, nr 9 (maj 1988): 1839–40. http://dx.doi.org/10.1016/0006-2952(88)90472-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Winogradoff, David, Pin‐Yi Li, Himanshu Joshi, Lauren Quednau, Christopher Maffeo i Aleksei Aksimentiev. "Chiral Systems Made from DNA". Advanced Science 8, nr 5 (21.01.2021): 2003113. http://dx.doi.org/10.1002/advs.202003113.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Sáez, Guillermo. "DNA Injury and Repair Systems". International Journal of Molecular Sciences 19, nr 7 (28.06.2018): 1902. http://dx.doi.org/10.3390/ijms19071902.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Kozulin, R. A., V. E. Kurochkin i V. M. Zolotarev. "Fluorescence-based DNA-monitoring systems". Journal of Optical Technology 72, nr 1 (1.01.2005): 20. http://dx.doi.org/10.1364/jot.72.000020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Martin, F. L. "DNA Repair Protocols: Eukaryotic Systems". Mutagenesis 14, nr 6 (1.11.1999): 657. http://dx.doi.org/10.1093/mutage/14.6.657.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

DOERFLER, WALTER, RAINER SCHUBBERT, HILDE HELLER, JENNIFER HERTZ, RALPH REMUS, JÖRG SCHRÖER, CHRISTINA KÄMMER i in. "Foreign DNA in mammalian systems". APMIS 106, S84 (listopad 1998): 62–68. http://dx.doi.org/10.1111/j.1600-0463.1998.tb05650.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Brzeski, Henry. "DNA cloning 2. Expression systems". Biochemical Systematics and Ecology 24, nr 1 (styczeń 1996): 92. http://dx.doi.org/10.1016/s0305-1978(96)90010-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Glazer, Peter M. "DNA Repair Protocols: Eukaryotic Systems". Radiation Research 153, nr 2 (luty 2000): 241–42. http://dx.doi.org/10.1667/0033-7587(2000)153[0241:drpes]2.0.co;2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Mardian, Rizki, i Kosuke Sekiyama. "Ant Systems-Based DNA Circuits". BioNanoScience 5, nr 4 (11.11.2015): 206–16. http://dx.doi.org/10.1007/s12668-015-0182-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Mayran, Alexandre, i Christopher Chase Bolt. "Transgenic Model Systems Have Revolutionized the Study of Disease". DNA and Cell Biology 41, nr 1 (1.01.2022): 49–52. http://dx.doi.org/10.1089/dna.2021.0514.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

TAVERNIER, JAN, RENE DEVOS, JOSE VAN DER HEYDEN, GUIDO HAUQUIER, RITA BAUDEN, INA FACHE, ERIC KAWASHIMA, JOEL VANDEKERCKHOVE, ROLAND CONTRERAS i WALTER FIERS. "Expression of Human and Murine Interleukin-5 in Eukaryotic Systems". DNA 8, nr 7 (wrzesień 1989): 491–501. http://dx.doi.org/10.1089/dna.1.1989.8.491.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Huckenbeck, W., H. G. Scheil, H. D. Schmidt, L. Efremovska i N. Xirotiris. "Population genetic studies in the Balkans. II. DNA-STR-systems". Anthropologischer Anzeiger 59, nr 3 (12.09.2001): 213–25. http://dx.doi.org/10.1127/anthranz/59/2001/213.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Bhandari, Deepika. "Touch DNA: Revolutionizing Evidentiary DNA Forensics". International Journal of Forensic Sciences 8, nr 3 (2023): 1–8. http://dx.doi.org/10.23880/ijfsc-16000314.

Pełny tekst źródła
Streszczenie:
Touch DNA is an advanced technique widely employed in modern criminal justice systems in many developed countries. It aims to extract genetic information from biological substances, specifically the cells shed from the outermost layer of skin, that are left behind on touched objects. This method involves recovering trace amounts of DNA from the biological cells released during contact, even though the quantity is usually very low. The recovered DNA is further analyzed to generate a person's DNA profile. Since dead cells are not really visible to the naked eye, successfully locating and recovering them can be challenging. Performing DNA profiling from the samples that are just touched is quite difficult, hence, requires a highly sensitive approach to its proper recovery, extraction, and amplification of the segment. The methods which are used for the collection, sampling procedure, preservation, removal of contaminants, quantification of DNA, the amplifying of the genetic material, and the subsequent analysis and interpretation of the findings all play a role in how well touch DNA analysis works. Various techniques have been created over time to gather touch DNA. Reliable DNA profiles are produced thanks to the use of sophisticated kits, tools, and well-equipped forensic laboratories, which benefit the criminal justice system.
Style APA, Harvard, Vancouver, ISO itp.
24

Patil, Siddhesh D., David G. Rhodes i Diane J. Burgess. "DNA-based therapeutics and DNA delivery systems: A comprehensive review". AAPS Journal 7, nr 1 (marzec 2005): E61—E77. http://dx.doi.org/10.1208/aapsj070109.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Chiaramoni, N. S., L. C. Baccarini, M. C. Taira i S. del V. Alonso. "Liposome/DNA Systems: Correlation Between Hydrophobicity and DNA Conformational Changes". Journal of Biological Physics 34, nr 1-2 (kwiecień 2008): 179–88. http://dx.doi.org/10.1007/s10867-008-9103-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

SEKIGUCHI, Mutsuo. "Genetic systems for stability of DNA." Seibutsu Butsuri 37, nr 3 (1997): 100–105. http://dx.doi.org/10.2142/biophys.37.100.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Guan, Chaoyang, Xiaoli Zhu i Chang Feng. "DNA Nanodevice-Based Drug Delivery Systems". Biomolecules 11, nr 12 (10.12.2021): 1855. http://dx.doi.org/10.3390/biom11121855.

Pełny tekst źródła
Streszczenie:
DNA, a natural biological material, has become an ideal choice for biomedical applications, mainly owing to its good biocompatibility, ease of synthesis, modifiability, and especially programmability. In recent years, with the deepening of the understanding of the physical and chemical properties of DNA and the continuous advancement of DNA synthesis and modification technology, the biomedical applications based on DNA materials have been upgraded to version 2.0: through elaborate design and fabrication of smart-responsive DNA nanodevices, they can respond to external or internal physical or chemical stimuli so as to smartly perform certain specific functions. For tumor treatment, this advancement provides a new way to solve the problems of precise targeting, controllable release, and controllable elimination of drugs to a certain extent. Here, we review the progress of related fields over the past decade, and provide prospects for possible future development directions.
Style APA, Harvard, Vancouver, ISO itp.
28

Lu, Shasha, Jianlei Shen, Chunhai Fan, Qian Li i Xiurong Yang. "DNA Assembly‐Based Stimuli‐Responsive Systems". Advanced Science 8, nr 13 (14.05.2021): 2100328. http://dx.doi.org/10.1002/advs.202100328.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Linko, Veikko, Sami Nummelin, Laura Aarnos, Kosti Tapio, J. Toppari i Mauri Kostiainen. "DNA-Based Enzyme Reactors and Systems". Nanomaterials 6, nr 8 (27.07.2016): 139. http://dx.doi.org/10.3390/nano6080139.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Xue, Han, Xihui Gao i Chuan Zhang. "DNA nanostructure-based siRNA delivery systems". Chinese Science Bulletin 64, nr 10 (25.01.2019): 1053–66. http://dx.doi.org/10.1360/n972018-00893.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

RADMAN, M., F. TADDEI i I. MATIC. "DNA Repair Systems and Bacterial Evolution". Cold Spring Harbor Symposia on Quantitative Biology 65 (1.01.2000): 11–20. http://dx.doi.org/10.1101/sqb.2000.65.11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Pannier, Angela K., i Lonnie D. Shea. "Controlled release systems for DNA delivery". Molecular Therapy 10, nr 1 (lipiec 2004): 19–26. http://dx.doi.org/10.1016/j.ymthe.2004.03.020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Mai, Danielle J., Christopher Brockman i Charles M. Schroeder. "Microfluidic systems for single DNA dynamics". Soft Matter 8, nr 41 (2012): 10560. http://dx.doi.org/10.1039/c2sm26036k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Radman, Miroslav. "DNA repair systems and genetic toxicology". Toxicology Letters 164 (wrzesień 2006): S3. http://dx.doi.org/10.1016/j.toxlet.2006.06.009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Ibraheem, D., A. Elaissari i H. Fessi. "Gene therapy and DNA delivery systems". International Journal of Pharmaceutics 459, nr 1-2 (styczeń 2014): 70–83. http://dx.doi.org/10.1016/j.ijpharm.2013.11.041.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Morling, Niels, i Hanna E. Hansen. "Paternity testing with VNTR DNA systems". International Journal of Legal Medicine 105, nr 4 (lipiec 1993): 189–96. http://dx.doi.org/10.1007/bf01642792.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Hansen, Hanna E., i Niels Morling. "Paternity testing with VNTR DNA systems". International Journal of Legal Medicine 105, nr 4 (lipiec 1993): 197–202. http://dx.doi.org/10.1007/bf01642793.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Kari, Lila, Gheorghe Păun, Grzegorz Rozenberg, Arto Salomaa i Sheng Yu. "DNA computing, sticker systems, and universality". Acta Informatica 35, nr 5 (1.05.1998): 401–20. http://dx.doi.org/10.1007/s002360050125.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Lee, Lan-Ying, i Stanton B. Gelvin. "T-DNA Binary Vectors and Systems". Plant Physiology 146, nr 2 (luty 2008): 325–32. http://dx.doi.org/10.1104/pp.107.113001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Toumpanakis, Dimitrios, i Stamatios E. Theocharis. "DNA repair systems in malignant mesothelioma". Cancer Letters 312, nr 2 (grudzień 2011): 143–49. http://dx.doi.org/10.1016/j.canlet.2011.08.021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Furniss, Caroline S. M., A. Bryan Hanley, Alan R. Mackie i James Mingins. "DNA manipulation in low water systems". Enzyme and Microbial Technology 13, nr 6 (czerwiec 1991): 525. http://dx.doi.org/10.1016/0141-0229(91)90043-a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Malinina, L. V., V. V. Makhaldiani, V. A. Tereshko, V. F. Zarytova i E. M. Ivanova. "Phase Diagrams for DNA Crystallization Systems". Journal of Biomolecular Structure and Dynamics 5, nr 2 (październik 1987): 405–33. http://dx.doi.org/10.1080/07391102.1987.10506402.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Nakakuki, Takashi, Jun-ichi Imura, Ibuki Kawamata i Satoshi Murata. "Robustness of DNA Strand Displacement Systems⋆". IFAC-PapersOnLine 51, nr 33 (2018): 32–37. http://dx.doi.org/10.1016/j.ifacol.2018.12.081.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Feldkamp, Udo, i Christof M Niemeyer. "Rational Engineering of Dynamic DNA Systems". Angewandte Chemie International Edition 47, nr 21 (13.05.2008): 3871–73. http://dx.doi.org/10.1002/anie.200800675.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Yu, Zhe, Jian Chen, Barry N. Ford, Moyra E. Brackley i Barry W. Glickman. "Human DNA repair systems: An overview". Environmental and Molecular Mutagenesis 33, nr 1 (1999): 3–20. http://dx.doi.org/10.1002/(sici)1098-2280(1999)33:1<3::aid-em2>3.0.co;2-l.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Lo, Chen-Yu, i Yang Gao. "DNA Helicase–Polymerase Coupling in Bacteriophage DNA Replication". Viruses 13, nr 9 (31.08.2021): 1739. http://dx.doi.org/10.3390/v13091739.

Pełny tekst źródła
Streszczenie:
Bacteriophages have long been model systems to study the molecular mechanisms of DNA replication. During DNA replication, a DNA helicase and a DNA polymerase cooperatively unwind the parental DNA. By surveying recent data from three bacteriophage replication systems, we summarized the mechanistic basis of DNA replication by helicases and polymerases. Kinetic data have suggested that a polymerase or a helicase alone is a passive motor that is sensitive to the base-pairing energy of the DNA. When coupled together, the helicase–polymerase complex is able to unwind DNA actively. In bacteriophage T7, helicase and polymerase reside right at the replication fork where the parental DNA is separated into two daughter strands. The two motors pull the two daughter strands to opposite directions, while the polymerase provides a separation pin to split the fork. Although independently evolved and containing different replisome components, bacteriophage T4 replisome shares mechanistic features of Hel–Pol coupling that are similar to T7. Interestingly, in bacteriophages with a limited size of genome like Φ29, DNA polymerase itself can form a tunnel-like structure, which encircles the DNA template strand and facilitates strand displacement synthesis in the absence of a helicase. Studies on bacteriophage replication provide implications for the more complicated replication systems in bacteria, archaeal, and eukaryotic systems, as well as the RNA genome replication in RNA viruses.
Style APA, Harvard, Vancouver, ISO itp.
47

Fiebig, Torsten, i Hans-Achim Wagenknecht. "DNA Photonics – Photoinduced Electron Transfer in Synthetic DNA-Donor–Acceptor Systems". CHIMIA International Journal for Chemistry 61, nr 4 (25.04.2007): 133–39. http://dx.doi.org/10.2533/chimia.2007.133.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

George, Aby K., i Harpreet Singh. "DNA Implementation of Fuzzy Inference Engine: Towards DNA Decision-Making Systems". IEEE Transactions on NanoBioscience 16, nr 8 (grudzień 2017): 773–82. http://dx.doi.org/10.1109/tnb.2017.2760821.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Lu, Chun-Hua, Bilha Willner i Itamar Willner. "DNA Nanotechnology: From Sensing and DNA Machines to Drug-Delivery Systems". ACS Nano 7, nr 10 (26.09.2013): 8320–32. http://dx.doi.org/10.1021/nn404613v.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Thompson, Marlo K., Robert W. Sobol i Aishwarya Prakash. "Exploiting DNA Endonucleases to Advance Mechanisms of DNA Repair". Biology 10, nr 6 (14.06.2021): 530. http://dx.doi.org/10.3390/biology10060530.

Pełny tekst źródła
Streszczenie:
The earliest methods of genome editing, such as zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALENs), utilize customizable DNA-binding motifs to target the genome at specific loci. While these approaches provided sequence-specific gene-editing capacity, the laborious process of designing and synthesizing recombinant nucleases to recognize a specific target sequence, combined with limited target choices and poor editing efficiency, ultimately minimized the broad utility of these systems. The discovery of clustered regularly interspaced short palindromic repeat sequences (CRISPR) in Escherichia coli dates to 1987, yet it was another 20 years before CRISPR and the CRISPR-associated (Cas) proteins were identified as part of the microbial adaptive immune system, by targeting phage DNA, to fight bacteriophage reinfection. By 2013, CRISPR/Cas9 systems had been engineered to allow gene editing in mammalian cells. The ease of design, low cytotoxicity, and increased efficiency have made CRISPR/Cas9 and its related systems the designer nucleases of choice for many. In this review, we discuss the various CRISPR systems and their broad utility in genome manipulation. We will explore how CRISPR-controlled modifications have advanced our understanding of the mechanisms of genome stability, using the modulation of DNA repair genes as examples.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii