Gotowa bibliografia na temat „Distributed Stream Processing Systems”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Distributed Stream Processing Systems”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Distributed Stream Processing Systems"
K, Sornalakshmi. "Dynamic Operator Scaling for Distributed Stream Processing Systems for Fluctuating Streams". Journal of Advanced Research in Dynamical and Control Systems 12, SP7 (25.07.2020): 2815–21. http://dx.doi.org/10.5373/jardcs/v12sp7/20202422.
Pełny tekst źródłaWei, Xiaohui, Yuan Zhuang, Hongliang Li i Zhiliang Liu. "Reliable stream data processing for elastic distributed stream processing systems". Cluster Computing 23, nr 2 (21.05.2019): 555–74. http://dx.doi.org/10.1007/s10586-019-02939-9.
Pełny tekst źródłaShuiying Yu, Shuiying Yu, Yinting Zheng Shuiying Yu, Fan Zhang Yinting Zheng, Hanhua Chen Fan Zhang i Hai Jin Hanhua Chen. "TriJoin: A Time-Efficient and Scalable Three-Way Distributed Stream Join System". 網際網路技術學刊 24, nr 2 (marzec 2023): 475–85. http://dx.doi.org/10.53106/160792642023032402024.
Pełny tekst źródłaShukla, Anshu, i Yogesh Simmhan. "Model-driven scheduling for distributed stream processing systems". Journal of Parallel and Distributed Computing 117 (lipiec 2018): 98–114. http://dx.doi.org/10.1016/j.jpdc.2018.02.003.
Pełny tekst źródłaBernardelli de Moraes, Matheus, i André Leon Sampaio Gradvohl. "Evaluating the impact of a coordinated checkpointing in distributed data streams processing systems using discrete event simulation". Revista Brasileira de Computação Aplicada 12, nr 2 (19.05.2020): 16–27. http://dx.doi.org/10.5335/rbca.v12i2.10295.
Pełny tekst źródłaTran, Tri Minh, i Byung Suk Lee. "Distributed stream join query processing with semijoins". Distributed and Parallel Databases 27, nr 3 (6.03.2010): 211–54. http://dx.doi.org/10.1007/s10619-010-7062-7.
Pełny tekst źródłaHildrum, Kirsten, Fred Douglis, Joel L. Wolf, Philip S. Yu, Lisa Fleischer i Akshay Katta. "Storage optimization for large-scale distributed stream-processing systems". ACM Transactions on Storage 3, nr 4 (luty 2008): 1–28. http://dx.doi.org/10.1145/1326542.1326547.
Pełny tekst źródłaEskandari, Leila, Jason Mair, Zhiyi Huang i David Eyers. "I-Scheduler: Iterative scheduling for distributed stream processing systems". Future Generation Computer Systems 117 (kwiecień 2021): 219–33. http://dx.doi.org/10.1016/j.future.2020.11.011.
Pełny tekst źródłaLiu, Xunyun, i Rajkumar Buyya. "Resource Management and Scheduling in Distributed Stream Processing Systems". ACM Computing Surveys 53, nr 3 (5.07.2020): 1–41. http://dx.doi.org/10.1145/3355399.
Pełny tekst źródłaShukla, Anshu, Shilpa Chaturvedi i Yogesh Simmhan. "RIoTBench: An IoT benchmark for distributed stream processing systems". Concurrency and Computation: Practice and Experience 29, nr 21 (4.10.2017): e4257. http://dx.doi.org/10.1002/cpe.4257.
Pełny tekst źródłaRozprawy doktorskie na temat "Distributed Stream Processing Systems"
Vijayakumar, Nithya Nirmal. "Data management in distributed stream processing systems". [Bloomington, Ind.] : Indiana University, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3278228.
Pełny tekst źródłaSource: Dissertation Abstracts International, Volume: 68-09, Section: B, page: 6093. Adviser: Beth Plale. Title from dissertation home page (viewed May 9, 2008).
Drougas, Ioannis. "Rate allocation in distributed stream processing systems". Diss., [Riverside, Calif.] : University of California, Riverside, 2008. http://proquest.umi.com/pqdweb?index=0&did=1663077971&SrchMode=2&sid=1&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1268240766&clientId=48051.
Pełny tekst źródłaIncludes abstract. Title from first page of PDF file (viewed March 10, 2010). Available via ProQuest Digital Dissertations. Includes bibliographical references (p. 93-98). Also issued in print.
Bordin, Maycon Viana. "A benchmark suite for distributed stream processing systems". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/163441.
Pełny tekst źródłaRecently a new application domain characterized by the continuous and low-latency processing of large volumes of data has been gaining attention. The growing number of applications of such genre has led to the creation of Stream Processing Systems (SPSs), systems that abstract the details of real-time applications from the developer. More recently, the ever increasing volumes of data to be processed gave rise to distributed SPSs. Currently there are in the market several distributed SPSs, however the existing benchmarks designed for the evaluation this kind of system covers only a few applications and workloads, while these systems have a much wider set of applications. In this work a benchmark for stream processing systems is proposed. Based on a survey of several papers with real-time and stream applications, the most used applications and areas were outlined, as well as the most used metrics in the performance evaluation of such applications. With these information the metrics of the benchmark were selected as well as a list of possible application to be part of the benchmark. Those passed through a workload characterization in order to select a diverse set of applications. To ease the evaluation of SPSs a framework was created with an API to generalize the application development and collect metrics, with the possibility of extending it to support other platforms in the future. To prove the usefulness of the benchmark, a subset of the applications were executed on Storm and Spark using the Azure Platform and the results have demonstrated the usefulness of the benchmark suite in comparing these systems.
Kakkad, Vasvi. "Curracurrong: a stream processing system for distributed environments". Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/12861.
Pełny tekst źródłaAl-Sinayyid, Ali. "JOB SCHEDULING FOR STREAMING APPLICATIONS IN HETEROGENEOUS DISTRIBUTED PROCESSING SYSTEMS". OpenSIUC, 2020. https://opensiuc.lib.siu.edu/dissertations/1868.
Pełny tekst źródłaBalazinska, Magdalena. "Fault-tolerance and load management in a distributed stream processing system". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/35287.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 187-199).
Advances in monitoring technology (e.g., sensors) and an increased demand for online information processing have given rise to a new class of applications that require continuous, low-latency processing of large-volume data streams. These "stream processing applications" arise in many areas such as sensor-based environment monitoring, financial services, network monitoring, and military applications. Because traditional database management systems are ill-suited for high-volume, low-latency stream processing, new systems, called stream processing engines (SPEs), have been developed. Furthermore, because stream processing applications are inherently distributed, and because distribution can improve performance and scalability, researchers have also proposed and developed distributed SPEs. In this dissertation, we address two challenges faced by a distributed SPE: (1) faulttolerant operation in the face of node failures, network failures, and network partitions, and (2) federated load management. For fault-tolerance, we present a replication-based scheme, called Delay, Process, and Correct (DPC), that masks most node and network failures.
(cont.) When network partitions occur, DPC addresses the traditional availability-consistency trade-off by maintaining, when possible, a desired availability specified by the application or user, but eventually also delivering the correct results. While maintaining the desired availability bounds, DPC also strives to minimize the number of inaccurate results that must later be corrected. In contrast to previous proposals for fault tolerance in SPEs, DPC simultaneously supports a variety of applications that differ in their preferred trade-off between availability and consistency. For load management, we present a Bounded-Price Mechanism (BPM) that enables autonomous participants to collaboratively handle their load without individually owning the resources necessary for peak operation. BPM is based on contracts that participants negotiate offline. At runtime, participants move load only to partners with whom they have a contract and pay each other the contracted price. We show that BPM provides incentives that foster participation and leads to good system-wide load distribution. In contrast to earlier proposals based on computational economies, BPM is lightweight, enables participants to develop and exploit preferential relationships, and provides stability and predictability.
(cont.) Although motivated by stream processing, BPM is general and can be applied to any federated system. We have implemented both schemes in the Borealis distributed stream processing engine. They will be available with the next release of the system.
by Magdalena Balazinska.
Ph.D.
Bustamante, Fabián Ernesto. "The active streams approach to adaptive distributed applications and services". Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/15481.
Pełny tekst źródłaPenczek, Frank. "Static guarantees for coordinated components : a statically typed composition model for stream-processing networks". Thesis, University of Hertfordshire, 2012. http://hdl.handle.net/2299/9046.
Pełny tekst źródłaChen, Liang. "A grid-based middleware for processing distributed data streams". Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1157990530.
Pełny tekst źródłaSree, Kumar Sruthi. "External Streaming State Abstractions and Benchmarking". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291338.
Pełny tekst źródłaDistribuerad dataströmsbehandling är ett populärt forskningsområde och är ett av de lovande paradigmen för snabbare och effektivare datahantering. Applicationstate är en förstklassig medborgare i nästan alla strömbehandlingssystem. Numera är strömbearbetning per definition statlig. För en strömbehandlingsapplikation backar staten operationer som aggregeringar, sammanfogningar och windows. Apache Flink är ett av de mest accepterade och mest använda strömbehandlingssystemen i branschen. En av de främsta anledningarna till att ingenjörer väljer ApacheFlink för att skriva och distribuera kontinuerliga applikationer är dess unika kombination av flexibilitet och skalbarhet för statlig programmerbarhet, och företaget garanterar att systemet säkerställer. Apache Flinks garantier gör alltid dess tillstånd korrekt och konsekvent även när noder misslyckas eller när antalet uppgifter ändras. Flink-tillstånd kan skala upp till dess beräkningsnods hårddiskgränser genom att använda inbäddade databaser för att lagra och hämta data. I allmänna tillståndsstöd som officiellt stöds av Flink är staten dock alltid tillgänglig lokalt för att beräkna uppgifter. Även om detta gör installationen bekvämare, skapar det andra utmaningar som icke-trivial tillståndskonfiguration och felåterställning. Samtidigt måste beräkning och tillstånd vara tätt kopplade. Den här strategin leder också till överanvändning och är kontraintuitiv för statligt intensiva endast arbetsbelastningar eller beräkningsintensiva endast arbetsbelastningar. Denna avhandling undersöker en alternativ statsbackendarkitektur, FlinkNDB, som kan hantera dessa utmaningar. FlinkNDB frikopplar tillstånd och beräknar med hjälp av en distribuerad databas för att lagra tillståndet. Avhandlingen täcker utmaningarna med befintliga statliga backends och designval och den nya implementeringen av statebackend. Vi har utvärderat genomförandet av FlinkNDBagainst befintliga statliga backends som erbjuds av Apache Flink.
Książki na temat "Distributed Stream Processing Systems"
J, Mullender Sape, red. Distributed systems. New York, N.Y: ACM Press, 1989.
Znajdź pełny tekst źródłaW, Chu Wesley, red. Distributed systems. Dedham, MA: Artech House, 1986.
Znajdź pełny tekst źródłaLangsford, Alwyn. Distributed systems management. Wokingham, Eng: Addison-Wesley, 1993.
Znajdź pełny tekst źródłaCrowcroft, Jon. Open distributed systems. London: UCL Press, 1995.
Znajdź pełny tekst źródłaOpen distributed systems. Boston: Artech House, 1995.
Znajdź pełny tekst źródłaBal, H. E. Programming distributed systems. Summit, NJ, USA: Silicon Press, 1990.
Znajdź pełny tekst źródłaT, Brazier F. M., Johansen D i Institute of Electrical and Electronics Engineers., red. Distributed open systems. Los Alamitos, Calif: IEEE Computer Society Press, 1994.
Znajdź pełny tekst źródłaEngineering, University of Sheffield Department of Automatic Control and Systems. Parallel processing & distributed systems. Sheffield: University of Sheffield, Dept. of Automatic Control and Systems Engineering, 1992.
Znajdź pełny tekst źródłaDistributed systems integration. Rijswijk, the Netherlands: Cap Gemini, 1991.
Znajdź pełny tekst źródłaKhalil, Drira, Martelli Andrea i Villemur Thierry, red. Cooperative environments for distributed systems engineering: The distributed systems environment report. Berlin: Springer, 2001.
Znajdź pełny tekst źródłaCzęści książek na temat "Distributed Stream Processing Systems"
Eibel, Christopher, Christian Gulden, Wolfgang Schröder-Preikschat i Tobias Distler. "Strome: Energy-Aware Data-Stream Processing". W Distributed Applications and Interoperable Systems, 40–57. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93767-0_4.
Pełny tekst źródłaXia, Cathy H., James A. Broberg, Zhen Liu i Li Zhang. "Distributed Resource Allocation in Stream Processing Systems". W Lecture Notes in Computer Science, 489–504. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11864219_34.
Pełny tekst źródłaKuralenok, Igor E., Artem Trofimov, Nikita Marshalkin i Boris Novikov. "Deterministic Model for Distributed Speculative Stream Processing". W Advances in Databases and Information Systems, 233–46. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98398-1_16.
Pełny tekst źródłaCai, Rijun, Weigang Wu, Ning Huang i Lihui Wu. "Processing Partially Ordered Requests in Distributed Stream Processing Systems". W Algorithms and Architectures for Parallel Processing, 211–19. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49583-5_16.
Pełny tekst źródłaZacheilas, Nikos, i Vana Kalogeraki. "DIsCO: DynamIc Data COmpression in Distributed Stream Processing Systems". W Distributed Applications and Interoperable Systems, 19–33. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59665-5_2.
Pełny tekst źródłaBattulga, Davaadorj, Daniele Miorandi i Cédric Tedeschi. "SpecK: Composition of Stream Processing Applications over Fog Environments". W Distributed Applications and Interoperable Systems, 38–54. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78198-9_3.
Pełny tekst źródłaChen, Fei, Song Wu i Hai Jin. "Network-Aware Grouping in Distributed Stream Processing Systems". W Algorithms and Architectures for Parallel Processing, 3–18. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-05051-1_1.
Pełny tekst źródłaWang, Xiaotong, Cheng Jiang, Junhua Fang, Ke Shu, Rong Zhang, Weining Qian i Aoying Zhou. "Evaluating Fault Tolerance of Distributed Stream Processing Systems". W Web and Big Data, 101–16. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60290-1_8.
Pełny tekst źródłaGorawski, Marcin, Pawel Marks i Michal Gorawski. "Modeling Data Stream Intensity in Distributed Stream Processing System". W Computer Networks, 372–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38865-1_38.
Pełny tekst źródłaSegarra, Carlos, Ricard Delgado-Gonzalo, Mathieu Lemay, Pierre-Louis Aublin, Peter Pietzuch i Valerio Schiavoni. "Using Trusted Execution Environments for Secure Stream Processing of Medical Data". W Distributed Applications and Interoperable Systems, 91–107. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22496-7_6.
Pełny tekst źródłaStreszczenia konferencji na temat "Distributed Stream Processing Systems"
Drougas, Yannis, i Vana Kalogeraki. "Accommodating bursts in distributed stream processing systems". W Distributed Processing (IPDPS). IEEE, 2009. http://dx.doi.org/10.1109/ipdps.2009.5161015.
Pełny tekst źródłaKarimov, Jeyhun, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri Heiskanen i Volker Markl. "Benchmarking Distributed Stream Data Processing Systems". W 2018 IEEE 34th International Conference on Data Engineering (ICDE). IEEE, 2018. http://dx.doi.org/10.1109/icde.2018.00169.
Pełny tekst źródłaZvara, Zoltan, Peter G. N. Szabo, Gabor Hermann i Andras Benczur. "Tracing Distributed Data Stream Processing Systems". W 2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems (FAS*W). IEEE, 2017. http://dx.doi.org/10.1109/fas-w.2017.153.
Pełny tekst źródłaPacaci, Anil, i M. Tamer Özsu. "Distribution-Aware Stream Partitioning for Distributed Stream Processing Systems". W SIGMOD/PODS '18: International Conference on Management of Data. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3206333.3206338.
Pełny tekst źródłaAffetti, Lorenzo. "Consistent Stream Processing". W DEBS '17: The 11th ACM International Conference on Distributed and Event-based Systems. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3093742.3093900.
Pełny tekst źródłaEskandari, Leila, Jason Mair, Zhiyi Huang i David Eyers. "Iterative Scheduling for Distributed Stream Processing Systems". W DEBS '18: The 12th ACM International Conference on Distributed and Event-based Systems. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3210284.3219768.
Pełny tekst źródłaXie, Xing, Indrakshi Ray, Waruna Ranasinghe, Philips A. Gilbert, Pramod Shashidhara i Anoop Yadav. "Distributed Multilevel Secure Data Stream Processing". W 2013 IEEE 33rd International Conference on Distributed Computing Systems Workshops (ICDCSW). IEEE, 2013. http://dx.doi.org/10.1109/icdcsw.2013.64.
Pełny tekst źródłaLi, Kejian, Gang Liu i Minhua Lu. "A Holistic Stream Partitioning Algorithm for Distributed Stream Processing Systems". W 2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT). IEEE, 2019. http://dx.doi.org/10.1109/pdcat46702.2019.00046.
Pełny tekst źródłaYongluan Zhou, Karl Aberer, Ali Salehi i Kian-Lee Tan. "Rethinking the design of distributed stream processing systems". W 2008 IEEE 24th International Conference on Data Engineeing workshop (ICDE Workshop 2008). IEEE, 2008. http://dx.doi.org/10.1109/icdew.2008.4498314.
Pełny tekst źródłaTuraga, Deepak S., Hyunggon Park, Rong Yan i Olivier Verscheure. "Adaptive Multimedia Mining on Distributed Stream Processing Systems". W 2010 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE, 2010. http://dx.doi.org/10.1109/icdmw.2010.159.
Pełny tekst źródłaRaporty organizacyjne na temat "Distributed Stream Processing Systems"
Popek, Gerald J., i Wesley W. Chu. Very Large Scale Distributed Information Processing Systems. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1991. http://dx.doi.org/10.21236/ada243983.
Pełny tekst źródłaCho, Kilseok, Alan D. George, Raj Subramaniyan i Keonwook Kim. Parallel Algorithms for Adaptive Matched-Field Processing in Distributed Array Systems. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2003. http://dx.doi.org/10.21236/ada465545.
Pełny tekst źródłaCho, Kilseok, Alan D. George i Raj Subramaniyan. Fault-Tolerant Parallel Algorithms for Adaptive Matched-Field Processing on Distributed Array Systems. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2004. http://dx.doi.org/10.21236/ada466282.
Pełny tekst źródłaSmith, Bradley W. Distributed Computing for Signal Processing: Modeling of Asynchronous Parallel Computation. Appendix G. On the Design and Modeling of Special Purpose Parallel Processing Systems. Fort Belvoir, VA: Defense Technical Information Center, maj 1985. http://dx.doi.org/10.21236/ada167622.
Pełny tekst źródłaSchmitt, Harry. Integrated Sensing and Processing (ISP) Phase II: Demonstration and Evaluation for Distributed Sensor Networks and Missile Seeker Systems. Fort Belvoir, VA: Defense Technical Information Center, marzec 2006. http://dx.doi.org/10.21236/ada444037.
Pełny tekst źródłaSchmitt, Harry A. Integrated Sensing and Processing (ISP) Phase II: Demonstration and Evaluation for Distributed Sensor Networks and Missile Seeker Systems. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2006. http://dx.doi.org/10.21236/ada454039.
Pełny tekst źródłaNavathe, Shamkant B. A Knowledge-Based Approach to Integrating and Querying Distributed Information Systems Heterogeneous Intelligent Processing for Engineering Design (HIPED). Fort Belvoir, VA: Defense Technical Information Center, sierpień 1997. http://dx.doi.org/10.21236/ada341697.
Pełny tekst źródłaSchmitt, Harry A. Integrated Sensing and Processing (ISP) Phase II: Demonstration and Evaluation for Distributed Sensor Netowrks and Missile Seeker Systems. Fort Belvoir, VA: Defense Technical Information Center, luty 2007. http://dx.doi.org/10.21236/ada464278.
Pełny tekst źródłaSchmitt, Harry A. Integrated Sensing and Processing (ISP) Phase 2: Demonstration and Evaluation for Distributed Sensor Networks and Missile Seeker Systems. Fort Belvoir, VA: Defense Technical Information Center, maj 2007. http://dx.doi.org/10.21236/ada468089.
Pełny tekst źródłaChristopher, David A., i Avihai Danon. Plant Adaptation to Light Stress: Genetic Regulatory Mechanisms. United States Department of Agriculture, maj 2004. http://dx.doi.org/10.32747/2004.7586534.bard.
Pełny tekst źródła