Gotowa bibliografia na temat „Distributed Data Fusion (DDF)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Distributed Data Fusion (DDF)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Distributed Data Fusion (DDF)"
Lu, Zongqing, Su-Lim Tan i Jit Biswas. "D2F: A Routing Protocol for Distributed Data Fusion in Wireless Sensor Networks". Wireless Personal Communications 70, nr 1 (13.06.2012): 391–410. http://dx.doi.org/10.1007/s11277-012-0700-9.
Pełny tekst źródłaJoelson, Anders, i Freyr Gauti Sigmundsson. "Additional operation rates after surgery for degenerative spine diseases: minimum 10 years follow-up of 4705 patients in the national Swedish spine register". BMJ Open 12, nr 12 (grudzień 2022): e067571. http://dx.doi.org/10.1136/bmjopen-2022-067571.
Pełny tekst źródłaPeyman, Setoodeh, Khayatian Alireza i Farjah Ebrahim. "Attitude Estimation By Divided Difference Filter-Based Sensor Fusion". Journal of Navigation 60, nr 1 (15.12.2006): 119–28. http://dx.doi.org/10.1017/s037346330600405x.
Pełny tekst źródłaChair, Z., i P. K. Varshney. "Distributed Bayesian hypothesis testing with distributed data fusion". IEEE Transactions on Systems, Man, and Cybernetics 18, nr 5 (1988): 695–99. http://dx.doi.org/10.1109/21.21597.
Pełny tekst źródłaXue, Ying Hua, i Jing Li. "Distributed Information Fusion Structure Based on Data Fusion Tree". Advanced Materials Research 225-226 (kwiecień 2011): 488–91. http://dx.doi.org/10.4028/www.scientific.net/amr.225-226.488.
Pełny tekst źródłaHollinger, Geoffrey A., Srinivas Yerramalli, Sanjiv Singh, Urbashi Mitra i Gaurav S. Sukhatme. "Distributed Data Fusion for Multirobot Search". IEEE Transactions on Robotics 31, nr 1 (luty 2015): 55–66. http://dx.doi.org/10.1109/tro.2014.2378411.
Pełny tekst źródłaFan, Lingling. "Data fusion-based distributed Prony analysis". Electric Power Systems Research 143 (luty 2017): 634–42. http://dx.doi.org/10.1016/j.epsr.2016.10.052.
Pełny tekst źródłaMcgrath, Michael, i Yuan Zheng. "Distributed contextual data fusion with ACIPL". IEEE Aerospace and Electronic Systems Magazine 24, nr 8 (sierpień 2009): 31–36. http://dx.doi.org/10.1109/maes.2009.5256385.
Pełny tekst źródłaPark, Gyu-Dong, i Young-Tae Byun. "Improving the Distributed Data Fusion Ability of the JDL Data Fusion Model". Journal of the Korea Institute of Military Science and Technology 15, nr 2 (5.04.2012): 147–54. http://dx.doi.org/10.9766/kimst.2012.15.2.147.
Pełny tekst źródłaHang, Guo, i Yu Min. "Data fusion in distributed multi-sensor system". Geo-spatial Information Science 7, nr 3 (styczeń 2004): 214–17. http://dx.doi.org/10.1007/bf02826294.
Pełny tekst źródłaRozprawy doktorskie na temat "Distributed Data Fusion (DDF)"
Aziz, Ashraf Mamdouh Abdel. "New data fusion algorithms for distributed multi-sensor multi-target environments". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1999. http://handle.dtic.mil/100.2/ADA369780.
Pełny tekst źródła"September 1999". Dissertation supervisor(s): Robert Cristi, Murali Tummala. Includes bibliographical references (p. 199-214). Also avaliable online.
Wallace, Christopher John. "Distributed data fusion for condition monitoring of graphite nuclear reactor cores". Thesis, University of Strathclyde, 2013. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=20607.
Pełny tekst źródłaVilsmaier, Christian. "Contextualized access to distributed and heterogeneous multimedia data sources". Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0094/document.
Pełny tekst źródłaMaking multimedia data available online becomes less expensive and more convenient on a daily basis. This development promotes web phenomenons such as Facebook, Twitter, and Flickr. These phenomena and their increased acceptance in society in turn leads to a multiplication of the amount of available images online. This vast amount of, frequently public and therefore searchable, images already exceeds the zettabyte bound. Executing a similarity search on the magnitude of images that are publicly available and receiving a top quality result is a challenge that the scientific community has recently attempted to rise to. One approach to cope with this problem assumes the use of distributed heterogeneous Content Based Image Retrieval system (CBIRs). Following from this anticipation, the problems that emerge from a distributed query scenario must be dealt with. For example the involved CBIRs’ usage of distinct metadata formats for describing their content, as well as their unequal technical and structural information. An addition issue is the individual metrics that are used by the CBIRs to calculate the similarity between pictures, as well as their specific way of being combined. Overall, receiving good results in this environment is a very labor intensive task which has been scientifically but not yet comprehensively explored. The problem primarily addressed in this work is the collection of pictures from CBIRs, that are similar to a given picture, as a response to a distributed multimedia query. The main contribution of this thesis is the construction of a network of Content Based Image Retrieval systems that are able to extract and exploit the information about an input image’s semantic concept. This so called semantic CBIRn is mainly composed of CBIRs that are configured by the semantic CBIRn itself. Complementarily, there is a possibility that allows the integration of specialized external sources. The semantic CBIRn is able to collect and merge results of all of these attached CBIRs. In order to be able to integrate external sources that are willing to join the network, but are not willing to disclose their configuration, an algorithm was developed that approximates these configurations. By categorizing existing as well as external CBIRs and analyzing incoming queries, image queries are exclusively forwarded to the most suitable CBIRs. In this way, images that are not of any use for the user can be omitted beforehand. The hereafter returned images are rendered comparable in order to be able to merge them to one single result list of images, that are similar to the input image. The feasibility of the approach and the hereby obtained improvement of the search process is demonstrated by a prototypical implementation. Using this prototypical implementation an augmentation of the number of returned images that are of the same semantic concept as the input images is achieved by a factor of 4.75 with respect to a predefined non-semantic CBIRn
Lin, Erwei Kam Moshe. "Detection in distributed sensor networks /". Philadelphia, Pa. : Drexel University, 2005. http://hdl.handle.net/1860/1303.
Pełny tekst źródłaGnanapandithan, Nithya. "Data detection and fusion in decentralized sensor networks". Thesis, Manhattan, Kan. : Kansas State University, 2005. http://hdl.handle.net/2097/132.
Pełny tekst źródłaPalaniappan, Ravishankar. "A SELF-ORGANIZING HYBRID SENSOR SYSTEM WITH DISTRIBUTED DATA FUSION FOR INTRUDER TRACKING AND SURVEILLANCE". Doctoral diss., University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2407.
Pełny tekst źródłaPh.D.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Modeling and Simulation PhD
Cadell, Philip. "BabelFuse data fusion unit with precision wireless clock synchronisation". Thesis, Queensland University of Technology, 2012. https://eprints.qut.edu.au/55225/1/Philip_Cadell_Thesis.pdf.
Pełny tekst źródłaGallagher, Jonathan G. "Likelihood as a Method of Multi Sensor Data Fusion for Target Tracking". The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1244041862.
Pełny tekst źródłaBorkar, Milind. "A distributed Monte Carlo method for initializing state vector distributions in heterogeneous smart sensor networks". Diss., Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22680.
Pełny tekst źródłaJones, Malachi Gabriel. "Design and implementation of a multi-agent systems laboratory". Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29617.
Pełny tekst źródłaCommittee Chair: Jeff Shamma; Committee Member: Eric Feron; Committee Member: Magnus Egerstedt. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Książki na temat "Distributed Data Fusion (DDF)"
Varshney, Pramod K. Distributed Detection and Data Fusion. New York, NY: Springer New York, 1997.
Znajdź pełny tekst źródłaVarshney, Pramod K. Distributed Detection and Data Fusion. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1904-0.
Pełny tekst źródłaVarshney, Pramod K. Distributed detection and data fusion. Redaktor Burrus C. S. Berlin: Springer, 1996.
Znajdź pełny tekst źródłaVarshney, Pramod K. Distributed detection and data fusion. Redaktor Burrus C. S. New York: Springer, 1997.
Znajdź pełny tekst źródłaZuidgeest, R. G. Multi-sensor data fusion in a distributed environment - architectural solutions -. Amsterdam: National Aerospace Laboratory, 1992.
Znajdź pełny tekst źródłaIyengar, S. S. Advances in distributed sensor integration: Application and theory. Upper Saddle River, N.J: Prentice Hall PTR, 1995.
Znajdź pełny tekst źródłaDistributed sensor networks: Sensor networking and applications. Wyd. 2. Boca Raton: Chapman & Hall/CRC, 2013.
Znajdź pełny tekst źródłaS, Schenker Paul, McKee G. T i Society of Photo-optical Instrumentation Engineers., red. Sensor fusion and distributed robotic agents: 21-22 November 1996, Boston, Massachusetts. Bellingham, Wash: SPIE, 1996.
Znajdź pełny tekst źródłaVictor, Lesser, Ortiz Charles L i Tambe Milind 1965-, red. Distributed sensor networks: A multiagent perspective. Boston: Kluwer Academic Publishers, 2003.
Znajdź pełny tekst źródłaMichael, Gastpar, red. Distributed source coding: Theory, algorithms, and applications. Amsterdam: Academic Press, 2009.
Znajdź pełny tekst źródłaCzęści książek na temat "Distributed Data Fusion (DDF)"
Varshney, Pramod K. "Distributed Sequential Detection". W Distributed Detection and Data Fusion, 216–32. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1904-0_6.
Pełny tekst źródłaDucourthial, Bertrand, Véronique Cherfaoui i Thierry Denoeux. "Self-stabilizing Distributed Data Fusion". W Lecture Notes in Computer Science, 148–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33536-5_15.
Pełny tekst źródłaRegazzoni, C. "Distributed Knowledge-based Systems for Integration of Image Processing Modules". W Data Fusion Applications, 133–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84990-9_14.
Pełny tekst źródłaVarshney, Pramod K. "Introduction". W Distributed Detection and Data Fusion, 1–5. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1904-0_1.
Pełny tekst źródłaVarshney, Pramod K. "Elements of Detection Theory". W Distributed Detection and Data Fusion, 6–35. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1904-0_2.
Pełny tekst źródłaVarshney, Pramod K. "Distributed Bayesian Detection: Parallel Fusion Network". W Distributed Detection and Data Fusion, 36–118. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1904-0_3.
Pełny tekst źródłaVarshney, Pramod K. "Distributed Bayesian Detection: Other Network Topologies". W Distributed Detection and Data Fusion, 119–78. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1904-0_4.
Pełny tekst źródłaVarshney, Pramod K. "Distributed Detection with False Alarm Rate Constraints". W Distributed Detection and Data Fusion, 179–215. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1904-0_5.
Pełny tekst źródłaVarshney, Pramod K. "Information Theory and Distributed Hypothesis Testing". W Distributed Detection and Data Fusion, 233–50. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1904-0_7.
Pełny tekst źródłaYan, Liping, Lu Jiang i Yuanqing Xia. "Distributed Data Fusion for Multirate Sensor Networks". W Multisensor Fusion Estimation Theory and Application, 53–68. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9426-7_4.
Pełny tekst źródłaStreszczenia konferencji na temat "Distributed Data Fusion (DDF)"
Easthope, P. F. "Track degradation as a consequence of distributed sensor fusion". W 9th IET Data Fusion & Target Tracking Conference (DF&TT 2012): Algorithms & Applications. IET, 2012. http://dx.doi.org/10.1049/cp.2012.0408.
Pełny tekst źródłaAhmed, Nisar. "Conditionally factorized DDF for general distributed Bayesian estimation". W 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems (MFI). IEEE, 2014. http://dx.doi.org/10.1109/mfi.2014.6997717.
Pełny tekst źródłaCoraluppi, Stefano, Laura Vertatschitsch i Craig Carthel. "Decision Sequencing and Distributed Data Association". W 2019 22th International Conference on Information Fusion (FUSION). IEEE, 2019. http://dx.doi.org/10.23919/fusion43075.2019.9011334.
Pełny tekst źródłaRendas, Maria-Joao, i Jose Manuel Leitao. "Rumor-robust distributed data fusion". W 2010 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2010). IEEE, 2010. http://dx.doi.org/10.1109/mfi.2010.5604462.
Pełny tekst źródłaYan Jin, Lin Sun i Jing Song. "Research on distributed data fusion model". W 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). IEEE, 2016. http://dx.doi.org/10.1109/imcec.2016.7867218.
Pełny tekst źródłaFong, Li-Wei. "Distributed Data Fusion via Hybrid Approach". W IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2007. http://dx.doi.org/10.1109/iecon.2007.4459985.
Pełny tekst źródłaChang, Edward Y., Yuan-Fang Wang i Volkan Rodoplu. "Distributed video data fusion and mining". W Defense and Security, redaktor Edward M. Carapezza. SPIE, 2004. http://dx.doi.org/10.1117/12.540115.
Pełny tekst źródłaNicholson, David, i Valerie Leung. "Managing a distributed data fusion network". W Defense and Security, redaktor Ivan Kadar. SPIE, 2004. http://dx.doi.org/10.1117/12.543612.
Pełny tekst źródłaMcGrath, Michael A., i Yuan F. Zheng. "Distributed Contextual Data Fusion with ACIPL". W 2008 IEEE National Aerospace and Electronics Conference. IEEE, 2008. http://dx.doi.org/10.1109/naecon.2008.4806568.
Pełny tekst źródłaParra-Loera, Ramon, Wiley E. Thompson i Syed A. Akbar. "Multilevel distributed fusion of multisensors data". W Aerospace Sensing, redaktorzy Vibeke Libby i Ivan Kadar. SPIE, 1992. http://dx.doi.org/10.1117/12.138217.
Pełny tekst źródłaRaporty organizacyjne na temat "Distributed Data Fusion (DDF)"
Varshney, Pramod K. Distributed Detection Theory and Data Fusion. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1999. http://dx.doi.org/10.21236/ada374837.
Pełny tekst źródłaVarshney, Pramod K. Distributed Detection Theory and Data Fusion. Fort Belvoir, VA: Defense Technical Information Center, marzec 1994. http://dx.doi.org/10.21236/ada280410.
Pełny tekst źródłaVarshney, Pramod K. Distributed Detection Theory and Data Fusion. Fort Belvoir, VA: Defense Technical Information Center, lipiec 1995. http://dx.doi.org/10.21236/ada301116.
Pełny tekst źródłaBroman, V., i J. Pack. Effectiveness Measurements for the Distributed Data Fusion Problem. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1994. http://dx.doi.org/10.21236/ada283084.
Pełny tekst źródłaBlum, Rick S. A Theory for Distributed Signal Detection and Data Fusion. Fort Belvoir, VA: Defense Technical Information Center, maj 2000. http://dx.doi.org/10.21236/ada377472.
Pełny tekst źródłaMori, Shozo, Bruce D'Ambrosio i Doug Hart. Autonomous Distributed Systems. Multiple-Level Distributed Data Fusion for Future DADS Using Bayesian Network Technology. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2002. http://dx.doi.org/10.21236/ada399999.
Pełny tekst źródłaSingh, Aarti. Resource-constrained Data Collection and Fusion for Identifying Weak Distributed Patterns in Networks. Fort Belvoir, VA: Defense Technical Information Center, październik 2013. http://dx.doi.org/10.21236/ada591821.
Pełny tekst źródłaRamchandran, Kannan, i Kristofer Pister. Sensor Webs of SmartDust: Distributed Signal Processing/Data Fusion/Inferencing in Large Microsensor Arrays. Fort Belvoir, VA: Defense Technical Information Center, marzec 2004. http://dx.doi.org/10.21236/ada422190.
Pełny tekst źródłaLlinas, James, Kedar Sambhoos i Christopher Bowman. Research in Evaluation Methods for Data Fusion-Capable Tactical Platforms and Distributed Multi-platform Systems in Electronic Warfare and Information-Warfare Related Missions. Fort Belvoir, VA: Defense Technical Information Center, luty 2009. http://dx.doi.org/10.21236/ada499058.
Pełny tekst źródła