Gotowa bibliografia na temat „Distinct charge density wave”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Distinct charge density wave”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Distinct charge density wave"
Hall, R. P., i A. Zettl. "Distinct current-carrying charge density wave states in NbSe3". Solid State Communications 57, nr 1 (styczeń 1986): 27–30. http://dx.doi.org/10.1016/0038-1098(86)90664-2.
Pełny tekst źródłaMiao, H., J. Lorenzana, G. Seibold, Y. Y. Peng, A. Amorese, F. Yakhou-Harris, K. Kummer i in. "High-temperature charge density wave correlations in La1.875Ba0.125CuO4 without spin–charge locking". Proceedings of the National Academy of Sciences 114, nr 47 (7.11.2017): 12430–35. http://dx.doi.org/10.1073/pnas.1708549114.
Pełny tekst źródłaMalliakas, Christos D., Maria Iavarone, Jan Fedor i Mercouri G. Kanatzidis. "Coexistence and Coupling of Two Distinct Charge Density Waves in Sm2Te5". Journal of the American Chemical Society 130, nr 11 (marzec 2008): 3310–12. http://dx.doi.org/10.1021/ja7111405.
Pełny tekst źródłaYUE, SONG. "ELECTRIC FIELD-ASSISTED RELAXATION OF THE CHARGE DENSITY WAVES IN K0.3MoO3". Modern Physics Letters B 21, nr 27 (20.11.2007): 1863–67. http://dx.doi.org/10.1142/s021798490701422x.
Pełny tekst źródłaEFTHIMION, PHILIP C., ERIK GILSON, LARRY GRISHAM, PAVEL KOLCHIN, RONALD C. DAVIDSON, SIMON YU i B. GRANT LOGAN. "ECR plasma source for heavy ion beam charge neutralization". Laser and Particle Beams 21, nr 1 (styczeń 2003): 37–40. http://dx.doi.org/10.1017/s0263034602211088.
Pełny tekst źródłaKandhakumar, Gopal, Chinnasamy Kalaiarasi i Poomani Kumaradhas. "Structure and charge density distribution of amine azide based hypergolic propellant molecules: a theoretical study". Canadian Journal of Chemistry 94, nr 2 (luty 2016): 126–36. http://dx.doi.org/10.1139/cjc-2015-0416.
Pełny tekst źródłaZhang, Xiaoxiao, Jun Hou, Wei Xia, Zhian Xu, Pengtao Yang, Anqi Wang, Ziyi Liu i in. "Destabilization of the Charge Density Wave and the Absence of Superconductivity in ScV6Sn6 under High Pressures up to 11 GPa". Materials 15, nr 20 (21.10.2022): 7372. http://dx.doi.org/10.3390/ma15207372.
Pełny tekst źródłaShi, Xun, Wenjing You, Yingchao Zhang, Zhensheng Tao, Peter M. Oppeneer, Xianxin Wu, Ronny Thomale i in. "Ultrafast electron calorimetry uncovers a new long-lived metastable state in 1T-TaSe2 mediated by mode-selective electron-phonon coupling". Science Advances 5, nr 3 (marzec 2019): eaav4449. http://dx.doi.org/10.1126/sciadv.aav4449.
Pełny tekst źródłaShimano, Ryo, i Naoto Tsuji. "Higgs Mode in Superconductors". Annual Review of Condensed Matter Physics 11, nr 1 (10.03.2020): 103–24. http://dx.doi.org/10.1146/annurev-conmatphys-031119-050813.
Pełny tekst źródłaYu, Fang-Hang, Xi-Kai Wen, Zhi-Gang Gui, Tao Wu, Zhenyu Wang, Zi-Ji Xiang, Jianjun Ying i Xianhui Chen. "Pressure tuning of the anomalous Hall effect in the kagome superconductor CsV3Sb5". Chinese Physics B 31, nr 1 (1.01.2022): 017405. http://dx.doi.org/10.1088/1674-1056/ac3990.
Pełny tekst źródłaRozprawy doktorskie na temat "Distinct charge density wave"
Gaspar, Luis Alejandro Ladino. "CHARGE DENSITY WAVE POLARIZATION DYNAMICS". UKnowledge, 2008. http://uknowledge.uky.edu/gradschool_diss/643.
Pełny tekst źródłaRai, Ram C. "ELECTRO-OPTICAL STUDIES OF CHARGE-DENSITY-WAVE MATERIALS". UKnowledge, 2004. http://uknowledge.uky.edu/gradschool_diss/427.
Pełny tekst źródłaRu, Nancy. "Charge density wave formation in rare-earth tritellurides /". May be available electronically:, 2008. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Pełny tekst źródłaHite, Omar. "Controlling the Charge Density Wave in VSE2 Containing Heterostructures". Thesis, University of Oregon, 2018. http://hdl.handle.net/1794/23179.
Pełny tekst źródłaBoshoff, Ilana. "Ultrafast electron diffraction on the charge density wave compound 4Hb-TaSe2". Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20062.
Pełny tekst źródłaENGLISH ABSTRACT: Ultrafast electron diffraction is a powerful method to study atomic movement in crystals on sub-picosecond timescales. This thesis consists of three parts. In part one the ultrafast electron diffraction machine is described, followed by improvements that were made and techniques that were developed in order to bring the system to state of the art level and enable the acquisition of suffcient data to obtain information on the structural dynamics in crystals. The second part contains a description of the sample which was studied in our fi rst time-resolved measurements, the transition-metal dichalcogenide 4Hb-TaSe2. This particular crystal is an example of a strongly coupled electronic system which develops a charge density wave (CDW) accompanied by a periodic lattice distortion (PLD). An overview of the formation of electron diffraction patterns and what can be learned from them are also given, followed by the results of the ultrafast electron diffraction experiments done with 4Hb-TaSe2. Part three describes an alternative source to study dynamics in crystalline samples, namely laser plasma-based ultrafast X-ray diffraction. The ultrafast electron diffraction group functions as a unit, but my tasks ranged from sample preparation and characterisation of the electron beam to the setting up and execution of experiments. I was involved in analysing the data and contributed small parts to the data analysis software.
AFRIKAANSE OPSOMMING: Ultravinnige elektron diffraksie is a metode om die beweging van atome in kristalle op sub-pikosekonde tydskale te bestudeer. Hierdie tesis bestaan uit drie dele. In deel een van die tesis word die ultravinnige elektron diffraksie masjien beskryf, gevolg deur verbeteringe wat aangebring is en tegnieke wat ontwikkel is om die sisteem tot op 'n wêreldklas vlak te bring waar die insameling van genoegsame data om inligting oor die strukturele dinamika in kristalle te bekom, moontlik is. Die tweede deel bevat 'n beskrywing van die monster wat in ons eerste tydopgeloste eksperimente gebruik is, naamlik die oorgangsmetaaldichalkogenied 4Hb-TaSe2. Hierdie kristal is 'n voorbeeld van 'n sterk gekoppelde elektroniese sisteem wat 'n ladingsdigtheid-golf en 'n gepaardgaande periodiese versteuring van die kristalrooster ontwikkel. 'n Oorsig van die formasie van elektron diffraksiepatrone en wat ons daaruit kan leer word ook gegee. Daarna word die resultate van die ultravinnige elektron diffraksie eksperimente wat op 4Hb-TaSe2uitgevoer is beskryf en bespreek. In deel drie word 'n alternatiewe metode om die dinamika in kristalmonsters te bestudeer, naamlik laser plasma-gebaseerde ultravinnige X-straal diffraksie, beskryf. Die ultravinnige elektron diffraksie groep funksioneer as 'n eenheid, maar my verantwoordelikhede het gestrek van die voorbereiding van monsters en die karakterisering van die elektron bundel tot die opstel en uitvoer van eksperimente. Ek was ook betrokke by die analisering van data en het dele van die data analise sagteware geskryf.
Yetman, Paul John. "Experimental studies on the size dependence of sliding charge-density wave phenomena". Thesis, University of Bristol, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279769.
Pełny tekst źródłaRen, Yuhang. "Time-resolved optical studies of colossal magnetoresistance and charge -density wave materials". W&M ScholarWorks, 2003. https://scholarworks.wm.edu/etd/1539623421.
Pełny tekst źródłaBellec, Ewen. "Study of charge density wave materials under current by X-ray diffraction". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS437/document.
Pełny tekst źródłaThe main subject of this manuscript is the X-ray diffraction of charge density wave (CDW) materials. We studied the quasi-1D NbSe3 crystal and the quasi-2D TbTe3. Several large instruments facilities were used for this study, the ESRF synchrotron in Grenoble on the ID01 line and the LCLS free electron laser in Stanford. First, thanks to the coherence of the X-beam at LCLS, we were able to observe a loss of transverse coherence in NbSe3 when applying an electrical current above a certain threshold as well as a longitudinal compression of the CDW. Then, at the ESRF, we used an X-ray beam focused on the micrometer scale by a Fresnel zone plate to scan the CDW locally by diffraction on NbSe3 and on TbTe3. When a current is applied to the sample, we observed a transverse deformation indicating that the CDW is pinned on the sample surface in NbSe3. In the case of TbTe3, the CDW rotates under current showing a hysteresis cycle when one is continuously changing from positive to negative current. We have also observed in several regions, in TbTe3, the creation of localized irradiation defects inducing a compression-dilation of the CDW. In a last theoretical part, we show how the theory of electric transport in the CDW state by a train of charged solitons, as well as taking into account the CDW pinning on the surface of the sample that we have seen experimentally, allows us to understand several resistivity measurements, found in the literature, made on samples with different dimensions. Finally, we present several ideas for an explanation of the CDW pinning at the surfaces on a microscopic level and propose the hypothesis of a commensurate CDW on the surface (and incommensurate in volume)
Edkins, Stephen David. "Visualising the charge and Cooper pair density waves in cuprates". Thesis, University of St Andrews, 2016. http://hdl.handle.net/10023/9888.
Pełny tekst źródłaYi, Tianyou. "Modeling of dynamical vortex states in charge density waves". Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00768237.
Pełny tekst źródłaKsiążki na temat "Distinct charge density wave"
Butz, Tilman, red. Nuclear Spectroscopy on Charge Density Wave Systems. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-1299-2.
Pełny tekst źródłaButz, Tilman. Nuclear Spectroscopy on Charge Density Wave Systems. Dordrecht: Springer Netherlands, 1992.
Znajdź pełny tekst źródłaTilman, Butz, red. Nuclear spectroscopy on charge density wave systems. Dordrecht: Kluwer Academic Publishers, 1992.
Znajdź pełny tekst źródłaZong, Alfred. Emergent States in Photoinduced Charge-Density-Wave Transitions. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81751-0.
Pełny tekst źródłaBoswell, Frank W. Advances in the Crystallographic and Microstructural Analysis of Charge Density Wave Modulated Crystals. Dordrecht: Springer Netherlands, 1999.
Znajdź pełny tekst źródłaBoswell, Frank W., i J. Craig Bennett, red. Advances in the Crystallographic and Microstructural Analysis of Charge Density Wave Modulated Crystals. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4603-6.
Pełny tekst źródłaW, Boswell Frank, i Bennett J. Craig, red. Advances in the cyrstallographic and microstructural analysis of charge density wave modulated crystals. Dordrecht: Kluwer Academic Publishers, 1999.
Znajdź pełny tekst źródłaCraig, Bennett J., i Boswell Frank W, red. Advances in the crystallographic and microstructural analysis of charge density wave modulated crystals. Boston: Kluwer Academi Publishers, 1999.
Znajdź pełny tekst źródłaBudkowski, Andrzej. Symmetry analysis of some modulated structures: Study of charge density wave-like periodic deviations in NbS₃, Au₂+x, Cd₁-x, TaTe₄ and (Ta₀.₇₂Nb₀.₂₈)Te₄. Kraków: Nakł. Uniwersytetu Jagiellońskiego, 1992.
Znajdź pełny tekst źródłaGy, Hutiray, i Sólyom J, red. Charge density waves in solids: Proceedings of the international conference held in Budapest, Hungary, September 3-7, 1984. Berlin: Springer-Verlag, 1985.
Znajdź pełny tekst źródłaCzęści książek na temat "Distinct charge density wave"
Monceau, P. "From Sliding Charge Density Wave to Charge Ordering". W The Physics of Organic Superconductors and Conductors, 17–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-76672-8_2.
Pełny tekst źródłaOverhauser, A. W. "Charge Density Wave Phenomena in Potassium". W Anomalous Effects in Simple Metals, 394–410. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631469.ch48.
Pełny tekst źródłaWerner, S. A., T. M. Giebultowicz i A. W. Overhauser. "Charge Density Wave Satellites in Potassium?" W Anomalous Effects in Simple Metals, 545–56. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631469.ch66.
Pełny tekst źródłaFrano, Alex. "The Cuprates: A Charge Density Wave". W Spin Spirals and Charge Textures in Transition-Metal-Oxide Heterostructures, 91–138. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07070-4_4.
Pełny tekst źródłaBrazovskii, S., i S. Matveenko. "Solitons in Charge Density Wave Crystals". W NATO ASI Series, 125–35. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5961-6_11.
Pełny tekst źródłaMonceau, P. "Introduction to Charge Density Wave Transport". W Physics and Chemistry of Low-Dimensional Inorganic Conductors, 371–88. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1149-2_24.
Pełny tekst źródłaBünner, M. J., G. Heinz, A. Kittel i J. Parisi. "Structure Formation in Charge Density Wave Systems". W Nonlinear Dynamics and Pattern Formation in Semiconductors and Devices, 133–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79506-0_6.
Pełny tekst źródłaBoriack, M. L., i A. W. Overhauser. "Dynamics of an Incommensurate Charge-Density Wave". W Anomalous Effects in Simple Metals, 169–78. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631469.ch27.
Pełny tekst źródłaGiuliani, G. F., i A. W. Overhauser. "Charge-Density-Wave Satellite Intensity in Potassium". W Anomalous Effects in Simple Metals, 295–301. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631469.ch39.
Pełny tekst źródłaGiuliani, G. F., i A. W. Overhauser. "Structure Factor of a Charge-Density Wave". W Anomalous Effects in Simple Metals, 327–37. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631469.ch41.
Pełny tekst źródłaStreszczenia konferencji na temat "Distinct charge density wave"
Eremenko, Victor, Peter Gammel, Gyorgy Remenyi, Valentyna Sirenko, Anatolii Panfilov, Vladimir Desnenko, Vladimir Ibulaev i A. Fedorchenko. "Magnetostriction Of Charge Density Wave Superconductor". W LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2355033.
Pełny tekst źródłaMatsuura, Toru, Taku Tsuneta, Katsuhiko Inagaki i Satoshi Tanda. "Charge Density Wave Dynamics on Ring". W LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2355285.
Pełny tekst źródłaRogovin, D., J. Scholl, R. Pizzoferrato, M. DeSpirito, M. Marinelli i U. Zammit. "Stark-enchanced nonlinear optics in shaped microparticle suspensions: beam combination". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.fz3.
Pełny tekst źródłaMATSUURA, TORU, KATSUHIKO INAGAKI, SATOSHI TANDA i TAKU TSUNETA. "TOPOLOGICAL EFFECTS IN CHARGE DENSITY WAVE DYNAMICS". W Proceedings of the International Symposium. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812814623_0060.
Pełny tekst źródłaLalngilneia, P. C., A. Thamizhavel, S. Ramakrishnan i D. Pal. "Charge density wave in Er2Ir3Si5 single crystal". W SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4872511.
Pełny tekst źródłaYOSHIMOTO, HIROYUKI, i SUSUMU KURIHARA. "THERMOELECTRIC TRANSPORTS IN CHARGE-DENSITY-WAVE SYSTEMS". W Proceedings of the International Symposium on Mesoscopic Superconductivity and Spintronics — In the Light of Quantum Computation. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701619_0011.
Pełny tekst źródłaDegiorai, L., i G. Groner. "Fluctuation effects in charge density wave condensates". W International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835922.
Pełny tekst źródłaNOGAWA, T., i K. NEMOTO. "CHARGE DENSITY WAVE STATE IN TOPOLOGICAL CRYSTAL". W Proceedings of the International Symposium. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812708687_0034.
Pełny tekst źródłavan Smaalen, Sander, Sitaram Ramakrishnan, Ngyuen Hai An Bui, Florian Feulner, Marila Anurova, Andreas Schönleber i Dmitry Chernyshov. "The three-dimensional charge-density-wave compound CuV2S4". W Aperiodic 2018 ("9th Conference on Aperiodic Crystals"). Iowa State University, Digital Press, 2018. http://dx.doi.org/10.31274/aperiodic2018-180810-33.
Pełny tekst źródłaINAGAKI, KATSUHIKO, TAKESHI TOSHIMA i SATOSHI TANDA. "SOLITON TRANSPORT IN NANOSCALE CHARGE-DENSITY-WAVE SYSTEMS". W Proceedings of the 1st International Symposium on TOP2005. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772879_0027.
Pełny tekst źródłaRaporty organizacyjne na temat "Distinct charge density wave"
Coleman, R. V., Zhenxi Dai, W. W. McNairy, C. G. Slough i Chen Wang. Surface structure and spectroscopy of charge-density wave materials using scanning tunneling microscopy. Office of Scientific and Technical Information (OSTI), styczeń 1991. http://dx.doi.org/10.2172/5901839.
Pełny tekst źródłaThomson, R. E. Scanning tunneling microscopy of charge density wave structure in 1T- TaS sub 2. Office of Scientific and Technical Information (OSTI), listopad 1991. http://dx.doi.org/10.2172/5130392.
Pełny tekst źródłaColeman, R. V., Zhenxi Dai, W. W. McNairy, C. G. Slough i Chen Wang. Surface structure and spectroscopy of charge-density wave materials using scanning tunneling microscopy. Office of Scientific and Technical Information (OSTI), grudzień 1991. http://dx.doi.org/10.2172/10122090.
Pełny tekst źródłaThomson, Ruth Ellen. Scanning tunneling microscopy of charge density wave structure in 1T- TaS2. Office of Scientific and Technical Information (OSTI), listopad 1991. http://dx.doi.org/10.2172/10158007.
Pełny tekst źródłaColeman, R. V., W. W. McNairy i C. G. Slough. Amplitude modulation of charge-density-wave domains in 1T-TaS sub 2 at 300 K. Office of Scientific and Technical Information (OSTI), styczeń 1991. http://dx.doi.org/10.2172/5879904.
Pełny tekst źródłaColeman, R. V., W. W. McNairy i C. G. Slough. Amplitude modulation of charge-density-wave domains in 1T-TaS{sub 2} at 300 K. Office of Scientific and Technical Information (OSTI), grudzień 1991. http://dx.doi.org/10.2172/10122082.
Pełny tekst źródłaCreager, W. N. Far infrared conductivity of charge density wave materials and the oxygen isotope effect in high-T sub c superconductors. Office of Scientific and Technical Information (OSTI), wrzesień 1991. http://dx.doi.org/10.2172/6112541.
Pełny tekst źródła