Artykuły w czasopismach na temat „Dissociation modeling”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Dissociation modeling”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Kulla, Patricia, Tina Braun, Tim Reichenberger i Joachim Kruse. "Researching Shame, Dissociation, and Their Relationship Using Latent Change Modeling". Journal of Experimental Psychopathology 14, nr 2 (kwiecień 2023): 204380872311627. http://dx.doi.org/10.1177/20438087231162756.
Pełny tekst źródłaBellezza, Francis S. "Modeling Guessing". Zeitschrift für Psychologie / Journal of Psychology 217, nr 3 (styczeń 2009): 125–35. http://dx.doi.org/10.1027/0044-3409.217.3.125.
Pełny tekst źródłaZaporozhets, E. P., i N. A. Shostak. "Mathematical modeling of some features of gas hydrates dissociation". Proceedings of the Voronezh State University of Engineering Technologies 80, nr 2 (2.10.2018): 313–22. http://dx.doi.org/10.20914/2310-1202-2018-2-313-322.
Pełny tekst źródłaHueber, Amandine, Yves Gimbert, Geoffrey Langevin, Jean-Marie Galano, Alexandre Guy, Thierry Durand, Nicolas Cenac, Justine Bertrand-Michel i Jean-Claude Tabet. "Identification of bacterial lipo-amino acids: origin of regenerated fatty acid carboxylate from dissociation of lipo-glutamate anion". Amino Acids 54, nr 2 (25.01.2022): 241–50. http://dx.doi.org/10.1007/s00726-021-03109-1.
Pełny tekst źródłaZiółkowski, Marcin, Anna Vikár, Maricris Lodriguito Mayes, Ákos Bencsura, György Lendvay i George C. Schatz. "Modeling the electron-impact dissociation of methane". Journal of Chemical Physics 137, nr 22 (14.12.2012): 22A510. http://dx.doi.org/10.1063/1.4733706.
Pełny tekst źródłaRodgers, M. T., Kent M. Ervin i P. B. Armentrout. "Statistical modeling of collision-induced dissociation thresholds". Journal of Chemical Physics 106, nr 11 (15.03.1997): 4499–508. http://dx.doi.org/10.1063/1.473494.
Pełny tekst źródłaBrübach, Lucas, Daniel Hodonj, Linus Biffar i Peter Pfeifer. "Detailed Kinetic Modeling of CO2-Based Fischer–Tropsch Synthesis". Catalysts 12, nr 6 (9.06.2022): 630. http://dx.doi.org/10.3390/catal12060630.
Pełny tekst źródłaSchafer, Lothar, A. A. Ischenko, Yu A. Zhabanov, A. A. Otlyotov i G. V. Girichev. "PHOTODISSOCIATION DYNAMICS OF SPATIALLY ALIGNED MOLECULES BY TIME-RESOLVED ELECTRON DIFFRACTION". IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 60, nr 3 (13.04.2017): 4. http://dx.doi.org/10.6060/tcct.2017603.5551.
Pełny tekst źródłaMuntean, Felician, Lars Heumann i P. B. Armentrout. "Modeling kinetic shifts in threshold collision-induced dissociation. Case study: Dichlorobenzene cation dissociation". Journal of Chemical Physics 116, nr 13 (kwiecień 2002): 5593–602. http://dx.doi.org/10.1063/1.1458247.
Pełny tekst źródłaMusakaev, N. G., S. L. Borodin i D. S. Belskikh. "MATHEMATICAL MODELING OF HEATED GAS DISSOCIATION PROCESS INTO THE RESERVOIR SATURATED WITH METHANE AND ITS HYDRATE". Oil and Gas Studies, nr 4 (30.08.2018): 68–74. http://dx.doi.org/10.31660/0445-0108-2018-4-68-74.
Pełny tekst źródłaArmentrout, P. B. "Statistical modeling of sequential collision-induced dissociation thresholds". Journal of Chemical Physics 126, nr 23 (21.06.2007): 234302. http://dx.doi.org/10.1063/1.2741550.
Pełny tekst źródłaRodgers, M. T., i P. B. Armentrout. "Statistical modeling of competitive threshold collision-induced dissociation". Journal of Chemical Physics 109, nr 5 (1.08.1998): 1787–800. http://dx.doi.org/10.1063/1.476754.
Pełny tekst źródłaBarbin, N., I. Tikina i D. Terentyev. "Thermodynamic modeling of melt of the Bi-Pb-Sn-Cd system". Journal of Physics: Conference Series 2057, nr 1 (1.10.2021): 012104. http://dx.doi.org/10.1088/1742-6596/2057/1/012104.
Pełny tekst źródłaLin, Yu-Jeng, Nazir Hossain i Chau-Chyun Chen. "Modeling dissociation of ionic liquids with electrolyte NRTL model". Journal of Molecular Liquids 329 (maj 2021): 115524. http://dx.doi.org/10.1016/j.molliq.2021.115524.
Pełny tekst źródłaBoyd, Iain D., Graham V. Candler i Deborah A. Levin. "Dissociation modeling in low density hypersonic flows of air". Physics of Fluids 7, nr 7 (lipiec 1995): 1757–63. http://dx.doi.org/10.1063/1.868490.
Pełny tekst źródłaRoostaie, M., i Y. Leonenko. "Analytical modeling of methane hydrate dissociation under thermal stimulation". Journal of Petroleum Science and Engineering 184 (styczeń 2020): 106505. http://dx.doi.org/10.1016/j.petrol.2019.106505.
Pełny tekst źródłaPanter, Justin L., Adam L. Ballard, Amadeu K. Sum, E. Dendy Sloan i Carolyn A. Koh. "Hydrate Plug Dissociation via Nitrogen Purge: Experiments and Modeling". Energy & Fuels 25, nr 6 (16.06.2011): 2572–78. http://dx.doi.org/10.1021/ef200196z.
Pełny tekst źródłaKolev, St, Ts Paunska, G. Trenchev i A. Bogaerts. "Modeling the CO2 dissociation in pulsed atmospheric-pressure discharge". Journal of Physics: Conference Series 1492 (kwiecień 2020): 012007. http://dx.doi.org/10.1088/1742-6596/1492/1/012007.
Pełny tekst źródłaNaidis, G. V., i N. Yu Babaeva. "Low-pressure CO2 discharges: 1D modeling". Physics of Plasmas 30, nr 1 (styczeń 2023): 013506. http://dx.doi.org/10.1063/5.0130672.
Pełny tekst źródłaMuntean, Felician, i P. B. Armentrout. "Modeling Kinetic Shifts and Competition in Threshold Collision-Induced Dissociation. Case Study: n-Butylbenzene Cation Dissociation". Journal of Physical Chemistry A 107, nr 38 (wrzesień 2003): 7413–22. http://dx.doi.org/10.1021/jp035256g.
Pełny tekst źródłaYakin, Khusnul, Sidikrubadi Pramudito i Kiagus Dahlan. "Perhitungan Energi Disosiasi Gugus Fungsi OH- dan PO43- Hidroksiapatit dengan Pemodelan Spektroskopi Inframerah Berbasis Particle Swarm Optimization (PSO)". INDONESIAN JOURNAL OF APPLIED PHYSICS 3, nr 01 (21.05.2016): 86. http://dx.doi.org/10.13057/ijap.v3i01.1236.
Pełny tekst źródłaGovorun, A. E., E. N. Esimbekova i V. A. Kratasyuk. "NAD(P)H: FMN-oxidoreductase functioning under macromolecular crowding: in vitro modeling". Доклады Академии наук 486, nr 4 (10.06.2019): 500–503. http://dx.doi.org/10.31857/s0869-56524864500-503.
Pełny tekst źródłaSholihah, Mar’atus, i Wu-Yang Sean. "Numerical Simulation on the Dissociation, Formation, and Recovery of Gas Hydrates on Microscale Approach". Molecules 26, nr 16 (19.08.2021): 5021. http://dx.doi.org/10.3390/molecules26165021.
Pełny tekst źródłaBao, Junwei Lucas, Xin Zhang i Donald G. Truhlar. "Barrierless association of CF2and dissociation of C2F4by variational transition-state theory and system-specific quantum Rice–Ramsperger–Kassel theory". Proceedings of the National Academy of Sciences 113, nr 48 (10.11.2016): 13606–11. http://dx.doi.org/10.1073/pnas.1616208113.
Pełny tekst źródłaPaenurk, Eno, i Peter Chen. "Modeling Gas-Phase Unimolecular Dissociation for Bond Dissociation Energies: Comparison of Statistical Rate Models within RRKM Theory". Journal of Physical Chemistry A 125, nr 9 (26.02.2021): 1927–40. http://dx.doi.org/10.1021/acs.jpca.1c00183.
Pełny tekst źródłaWang, Da Yong, Xiao Jing Ma i Juan Qiao. "Impact Factors of Natural Gas Hydrate Dissociation by Depressurization: A Review". Advanced Materials Research 868 (grudzień 2013): 564–67. http://dx.doi.org/10.4028/www.scientific.net/amr.868.564.
Pełny tekst źródłaJosyula, Eswar, William F. Bailey i Casimir J. Suchyta. "Dissociation Modeling in Hypersonic Flows Using State-to-State Kinetics". Journal of Thermophysics and Heat Transfer 25, nr 1 (styczeń 2011): 34–47. http://dx.doi.org/10.2514/1.49903.
Pełny tekst źródłaDicharry, Christophe, Pascal Gayet, Gérard Marion, Alain Graciaa i Anatoliy N. Nesterov. "Modeling Heating Curve for Gas Hydrate Dissociation in Porous Media". Journal of Physical Chemistry B 109, nr 36 (wrzesień 2005): 17205–11. http://dx.doi.org/10.1021/jp0504975.
Pełny tekst źródłaAndrienko, Daniil A., i Iain D. Boyd. "High fidelity modeling of thermal relaxation and dissociation of oxygen". Physics of Fluids 27, nr 11 (listopad 2015): 116101. http://dx.doi.org/10.1063/1.4935241.
Pełny tekst źródłaOkada, Yoshiki, Kei Sunouchi, Shuji Kato, Hideo Tashiro i Kazuo Takeuchi. "Modeling of Multifrequency Infrared Multiphoton Dissociation for Laser Isotope Separation." JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 27, nr 2 (1994): 222–27. http://dx.doi.org/10.1252/jcej.27.222.
Pełny tekst źródłaGoel, Naval, Michael Wiggins i Subhash Shah. "Analytical modeling of gas recovery from in situ hydrates dissociation". Journal of Petroleum Science and Engineering 29, nr 2 (kwiecień 2001): 115–27. http://dx.doi.org/10.1016/s0920-4105(01)00094-8.
Pełny tekst źródłaLee, Ming-Tsung, Aleksey Vishnyakov i Alexander V. Neimark. "Modeling Proton Dissociation and Transfer Using Dissipative Particle Dynamics Simulation". Journal of Chemical Theory and Computation 11, nr 9 (11.08.2015): 4395–403. http://dx.doi.org/10.1021/acs.jctc.5b00467.
Pełny tekst źródłaHashemi, Hamed, Saeedeh Babaee, Amir H. Mohammadi, Paramespri Naidoo i Deresh Ramjugernath. "Experimental measurements and thermodynamic modeling of refrigerant hydrates dissociation conditions". Journal of Chemical Thermodynamics 80 (styczeń 2015): 30–40. http://dx.doi.org/10.1016/j.jct.2014.08.007.
Pełny tekst źródłaMacheret, Sergey O., i Igor V. Adamovich. "Semiclassical modeling of state-specific dissociation rates in diatomic gases". Journal of Chemical Physics 113, nr 17 (listopad 2000): 7351–61. http://dx.doi.org/10.1063/1.1313386.
Pełny tekst źródłaGhiasi, Mohammad M., Younes Noorollahi i Alireza Aslani. "CO2 hydrate: Modeling of incipient stability conditions and dissociation enthalpy". Petroleum Science and Technology 36, nr 4 (15.01.2018): 259–65. http://dx.doi.org/10.1080/10916466.2017.1402036.
Pełny tekst źródłaSolomko, V., M. Verstraete, A. Delcorte, B. J. Garrison, X. Gonze i P. Bertrand. "Modeling the dissociation and ionization of a sputtered organic molecule". Applied Surface Science 252, nr 19 (lipiec 2006): 6459–62. http://dx.doi.org/10.1016/j.apsusc.2006.02.075.
Pełny tekst źródłaNazridoust, Kambiz, i Goodarz Ahmadi. "Computational modeling of methane hydrate dissociation in a sandstone core". Chemical Engineering Science 62, nr 22 (listopad 2007): 6155–77. http://dx.doi.org/10.1016/j.ces.2007.06.038.
Pełny tekst źródłaLin, Jeen-Shang, Yongkoo Seol i Jeong Hoon Choi. "Geomechanical modeling of hydrate-bearing sediments during dissociation under shear". International Journal for Numerical and Analytical Methods in Geomechanics 41, nr 14 (3.05.2017): 1523–38. http://dx.doi.org/10.1002/nag.2695.
Pełny tekst źródłaRaju, Rajesh K., Ashfaq A. Bengali i Edward N. Brothers. "A unified set of experimental organometallic data used to evaluate modern theoretical methods". Dalton Transactions 45, nr 35 (2016): 13766–78. http://dx.doi.org/10.1039/c6dt02763f.
Pełny tekst źródłaChuvilin, Davletshina, Ekimova, Bukhanov, Shakhova i Semiletov. "Role of Warming in Destabilization of Intrapermafrost Gas Hydrates in the Arctic Shelf: Experimental Modeling". Geosciences 9, nr 10 (20.09.2019): 407. http://dx.doi.org/10.3390/geosciences9100407.
Pełny tekst źródłaB, Guo. "Mathematical Modeling of Heat Transfer from Geothermal Zones to Natural Gas Hydrate Reservoirs". Petroleum & Petrochemical Engineering Journal 6, nr 1 (2022): 1–10. http://dx.doi.org/10.23880/ppej-16000296.
Pełny tekst źródłaМирочник, А. Г., Е. В. Федоренко i А. Ю. Белолипцев. "Люминесценция дитолуоилметаната дифторида бора. Образование J-агрегатов". Оптика и спектроскопия 130, nr 2 (2022): 237. http://dx.doi.org/10.21883/os.2022.02.52006.1717-21.
Pełny tekst źródłaChuvilin, Evgeny, Gennadiy Tipenko, Boris Bukhanov, Vladimir Istomin i Dimitri Pissarenko. "Simulating Thermal Interaction of Gas Production Wells with Relict Gas Hydrate-Bearing Permafrost". Geosciences 12, nr 3 (2.03.2022): 115. http://dx.doi.org/10.3390/geosciences12030115.
Pełny tekst źródłaYassen, Ashraf, Erik Olofsen, Raymonda Romberg, Elise Sarton, Meindert Danhof i Albert Dahan. "Mechanism-based Pharmacokinetic–Pharmacodynamic Modeling of the Antinociceptive Effect of Buprenorphine in Healthy Volunteers". Anesthesiology 104, nr 6 (1.06.2006): 1232–42. http://dx.doi.org/10.1097/00000542-200606000-00019.
Pełny tekst źródłaRuan, Xu Ke, Yong Chen Song i Hai Feng Liang. "Modeling the Effect of Permeability on Methane Gas Production from Hydrates in Porous Media". Applied Mechanics and Materials 29-32 (sierpień 2010): 1762–67. http://dx.doi.org/10.4028/www.scientific.net/amm.29-32.1762.
Pełny tekst źródłaMirochnik A. G., Fedorenko E.V. i Beloliptsev A. Yu. "Luminescence of boron difluoride ditoluoylmethanate. Formation of J-aggregatess". Optics and Spectroscopy 132, nr 2 (2022): 236. http://dx.doi.org/10.21883/eos.2022.02.53212.1717-21.
Pełny tekst źródłaKovalenko, A., V. Gudza, M. Urtenov i N. Chubyr. "Mathematical modeling of the influence of non-catalytic dissociation / recombination of water molecules in the desalination channel on electric convection". Journal of Physics: Conference Series 2131, nr 2 (1.12.2021): 022109. http://dx.doi.org/10.1088/1742-6596/2131/2/022109.
Pełny tekst źródłaCobos, C. J., K. Hintzer, L. Sölter, E. Tellbach, A. Thaler i J. Troe. "Shock wave study and theoretical modeling of the thermal decomposition of c-C4F8". Physical Chemistry Chemical Physics 17, nr 48 (2015): 32219–24. http://dx.doi.org/10.1039/c5cp05366h.
Pełny tekst źródłaCao, Xuewen, Kairan Yang, Wenzhu Xia, Guoxiang Tang i Jiang Bian. "Dissociation experiment and dissociation rate model of CO2 hydrate". Natural Gas Industry B 8, nr 6 (grudzień 2021): 607–14. http://dx.doi.org/10.1016/j.ngib.2021.11.008.
Pełny tekst źródłaYuan, Yilong, Tianfu Xu, Yingli Xia i Xin Xin. "Comparison of Simplistic and Geologically Descriptive Production Modeling for Natural-Gas Hydrate by Depressurization". SPE Journal 24, nr 02 (6.02.2019): 563–78. http://dx.doi.org/10.2118/194214-pa.
Pełny tekst źródła