Gotowa bibliografia na temat „Dispersed phase”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Dispersed phase”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Dispersed phase"

1

Hudiyanti, Dwi. "Analysis of Dispersed Phase of Coconut Milk Emulsion". Jurnal Kimia Sains dan Aplikasi 3, nr 1 (1.02.2000): 159–62. http://dx.doi.org/10.14710/jksa.3.1.159-162.

Pełny tekst źródła
Streszczenie:
Experiments were conducted to study the dispersed phase of coconut milk emulsion. They were optical microscopy analysis using a Nikon Microscope and particle size analysis using a Coulter Counter Multisizer. Particle size analysis using a Coulter Counter Multisizer on both original coconut milk and homogenized coconut milk at T = 19 °C indicated that they had a wide range of particle size with average value of 5.988 + 1 .0 pm and 6.696 + 1 . 1 pm in diameter respectively. Optical microscopy analysis showed that homogenization of coconut milk after it was heated in a water bath at T = 35 °C for about 15 minutes resulted in changes of particle size, the particle size became smaller. The result lead to a conclusion that the coconut milk emulsion may be considered as a polydisperse emulsion and it indicates that the system should not be sensitive to small variations in preparation or subsequent handling.
Style APA, Harvard, Vancouver, ISO itp.
2

Cheshko, Fedir. "Microscopic Study of the Coial Tar Carbonaceous Dispersed Phase". Chemistry & Chemical Technology 5, nr 3 (15.09.2011): 355–62. http://dx.doi.org/10.23939/chcht05.03.355.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Zou, Xiang-Yang, i John M. Shaw. "Dispersed Phases and Dispersed Phase Deposition Issues Arising in Asphaltene Rich Hydrocarbon Fluids". Petroleum Science and Technology 22, nr 7-8 (2.01.2004): 759–71. http://dx.doi.org/10.1081/lft-120038718.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Zakinyan, Arthur R., Ludmila M. Kulgina, Anastasia A. Zakinyan i Sergey D. Turkin. "Electrical Conductivity of Field-Structured Emulsions". Fluids 5, nr 2 (16.05.2020): 74. http://dx.doi.org/10.3390/fluids5020074.

Pełny tekst źródła
Streszczenie:
The structure formation influence on various macroscopic properties of fluid–fluid disperse systems is poorly investigated. The present work deals with the experimental study of the charge transfer in emulsions whose dispersed phase droplets are arranged into chainlike structures under the action of an external force field. The emulsions studied are the fluid system in which water droplets are dispersed in a hydrocarbon-based magnetic fluid. Under the effect of an external uniform magnetic field, anisotropic aggregates form from the emulsion dispersed phase drops. The low-frequency electrical conductivity of emulsions has been measured. It is demonstrated that the emulsions’ conductivity grows several times under the effect of magnetic field parallel to the measuring electrical field. The anisotropic character of the emulsion electrical conductivity in the presence of magnetic field has been demonstrated. It is revealed that the maximal response of conductivity on the magnetic field action takes place at the dispersed phase volume fraction of about 20%. The dynamics of the conductivity variation is analyzed in dependence on the magnetic field strength and the dispersed phase volume fraction. The obtained results may be of interest in the development of potential applications of disperse systems with magnetic-field-controllable properties.
Style APA, Harvard, Vancouver, ISO itp.
5

Ho, Timothy, i Hong Xue. "Dispersed Mobile-Phase Countercurrent Chromatography". Separations 3, nr 4 (1.11.2016): 32. http://dx.doi.org/10.3390/separations3040032.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Weiss, Jindřich. "Phase Inversion in Two-Phase Liquid Systems". Collection of Czechoslovak Chemical Communications 57, nr 7 (1992): 1419–23. http://dx.doi.org/10.1135/cccc19921419.

Pełny tekst źródła
Streszczenie:
New data on critical holdups of dispersed phase were measured at which the phase inversion took place. The systems studied differed in the ratio of phase viscosities and interfacial tension. A weak dependence was found of critical holdups on the impeller revolutions and on the material contactor; on the contrary, a considerable effect of viscosity was found out as far as the viscosity of continuous phase exceeded that of dispersed phase.
Style APA, Harvard, Vancouver, ISO itp.
7

Olczak, Gene. "Polarization phase shifting dispersed fringe sensor". Optics Express 20, nr 4 (31.01.2012): 3703. http://dx.doi.org/10.1364/oe.20.003703.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Blacker, R., K. Lewis, I. Mason, I. Sage i C. Webb. "Nano-Phase Polymer Dispersed Liquid Crystals". Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 329, nr 1 (sierpień 1999): 187–98. http://dx.doi.org/10.1080/10587259908025940.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Rousseau, D., L. Zilnik, R. Khan i S. Hodge. "Dispersed phase destabilization in table spreads". Journal of the American Oil Chemists' Society 80, nr 10 (październik 2003): 957–61. http://dx.doi.org/10.1007/s11746-003-0803-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Baba, Naoshi, i Kaichirou Shibayama. "Geometric Phase Observation with Dispersed Fringes". Optical Review 4, nr 5 (wrzesień 1997): 593–95. http://dx.doi.org/10.1007/s10043-997-0593-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Dispersed phase"

1

Kemiklioglu, Emine. "Polymer Stabilized and Dispersed Blue Phases". Kent State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=kent1409153158.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Lee, Woo Young. "Chemical vapor deposition of dispersed phase ceramic composites". Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/11857.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Ngan, K. H. "Phase inversion in dispersed liquid-liquid pipe flow". Thesis, University College London (University of London), 2011. http://discovery.ucl.ac.uk/1318099/.

Pełny tekst źródła
Streszczenie:
This thesis presents the experimental and theoretical investigations on the development of phase inversion in horizontal pipeline flow of two immiscible liquids. It aims to provide an understanding on the flow development across the phase inversion transition as well as the effect on pressure drop. Experimental investigation on phase inversion and associated phenomena were conducted in a 38mm I.D. liquid pipeline flow facility available in the Department of Chemical Engineering at University College London (UCL). Two sets of test pipelines are constructed using stainless steel and acrylic. The inlet section of the pipeline has also been designed in two different configurations – (1) Y-junction inlet to allow dispersed flow to be developed along the pipeline (2) Dispersed inlet to allow formation of dispersion immediately after the two phases are joined. Pressure drop along the pipeline is measured using a differential pressure transducer and is studied for changes due to redistribution of the phases during inversion. Various conductivity probes (ring probes, wire probes, electrical resistance tomography and dual impedance probe) are installed along the pipeline to detect the change in phase continuity and distribution as well as drop size distribution based on the difference in conductivity of the oil and water phases. During the investigation, the occurrence of phase inversion is firstly investigated and the gradual transition during the process is identified. The range of phase fraction at which the transition occurs is determined. The range of phase fraction becomes significantly narrower when the dispersed inlet is used. The outcome of the investigation also becomes the basis for subsequent investigation with the addition of glycerol to the water phase to reduce the interfacial tension. Based on the experimental outcome, the addition of glycerol does not affect the inversion of the oil phase while enhancing the continuity of the water phase. As observed experimentally, significant changes in pressure gradient can be observed particularly during phase inversion. Previous literatures have also reviewed that phase inversion occurs at the maximum pressure gradient. In a horizontal pipeline, pressure gradient is primarily caused by the frictional shear on the fluid flow in the pipe and, in turn, is significantly affected by the fluid viscosities. A study is conducted to investigate on the phase inversion point by identifying the maximum mixture viscosity (i.e. maximum pressure gradient) that an oil-in-water (O/W) and water-in-oil (W/O) dispersion can sustain. It is proposed that the mixture viscosity will not increase further with an increase in the initial dispersed phase if the inverted dispersion has a lower mixture viscosity. This hypothesis has been applied across a wide range of liquid-liquid dispersion with good results. This study however cannot determine the hysteresis effect which is possibly caused by inhomogeneous inversion in the fluid system. A mechanistic model is developed to predict the flow characteristics as well as the pressure gradient during a phase inversion transition. It aims to predict the observed change in flow pattern from a fully dispersed flow to a dual continuous flow during phase inversion transition. The existence of the interfacial height provides a selection criterion to determine whether a momentum balance model for homogeneous flow or a two-fluid layered flow should be applied to calculate the pressure gradient. A friction factor is also applied to account for the drag reduction in a dispersed flow. This developed model shows reasonable results in predicting the switch between flow patterns (i.e. the boundaries for the phase inversion transition) and the corresponding pressure gradient. Lastly, computational fluid dynamic (CFD) simulation is applied to identify the key interphase forces in a dispersed flow. The study has also attempted to test the limitation of existing interphase force models to densely dispersed flow. From the study, it is found that the lift force and the turbulent dispersion forces are significant to the phase distribution in a dispersed flow. It also provides a possible explanation to the observed flow distribution in the experiments conducted. However, the models available in CFX are still unable to predict well in a dense dispersion (60% dispersed). This study is also suggested to form the basis for more detailed work in future to optimize the simulation models to improve the prediction of phase inversion in a CFD simulation.
Style APA, Harvard, Vancouver, ISO itp.
4

Haidemenopoulos, Gregory N. "Dispersed-phase transformation toughening in ultrahigh-strength steels". Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/14564.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Zhou, Jianyu. "Applications of Dispersed Phase Flows Through Porous Media". University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1542106409444557.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Hill, David Paul. "The computer simulation of dispersed two-phase flow". Thesis, Imperial College London, 1998. http://hdl.handle.net/10044/1/8733.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Rusche, Henrik. "Computational fluid dynamics of dispersed two-phase flows at high phase fractions". Thesis, Imperial College London, 2003. http://hdl.handle.net/10044/1/8110.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Varone, Anthony F. (Anthony Francis). "The influence of the dispersed phase on the convective heat transfer in dispersed flow film boiling". Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/13996.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Govan, Alastair Hamilton. "Modelling of vertical annular and dispersed two-phase flows". Thesis, Imperial College London, 1990. http://hdl.handle.net/10044/1/8778.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Deshpande, Kiran B. "Study of transport limited heterogeneous reaction in the dispersed phase". Thesis, University of Sheffield, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419600.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Dispersed phase"

1

Meng, Haoran. On dispersed two phase flows past obstacles. Eindhoven: Eindhoven University of Technology, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Pullum, Olwen J. The fabrication and analysis of hard Si3N4-based, dispersed phase composites. [s.l.]: typescript, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Kalis, Aouni A. Liquid phase velocity of turbulent dispersed bubbles flow in large diameter horizontal pipes. Montreal: Ecole polytechnique de Montreal, Departement de genie mecanique, Section mecanique appliquee, 1988.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

International Symposium on Two-Phase Annular and Dispersed Flows (1984 University of Pisa). Two-phase annular and dispersed flows: Selected papers presented at the International Symposium on Two-Phase and Dispersed Flows, University of Pisa, Italy, 24-29 June 1984. Redaktorzy Andreussi P, Azzopardi B. J i Hanratty T. J. Oxford: Pergamon Press, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Majumdar, Arunava. A study of the ostwald ripening phenomenon of a dispersed phase in a molten salt system. Ottawa: National Library of Canada, 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Morel, Christophe. Mathematical Modeling of Disperse Two-Phase Flows. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20104-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Mols, Bernard Marie. Particle dispersion and deposition in horizontal turbulent channel and tube flows =: Dispersie en depositie van deeltjes in horizontale, turbulente, kanaal- en buisstromingen. Delft: Delft University Press, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Hanratty, T. Two Phase Annular and Dispersed Flow. Pergamon Pr, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Sofiane Berrouk, Abdallah, red. Stochastic Lagrangian Modeling for Large Eddy Simulation of Dispersed Turbulent Two-Phase Flows. BENTHAM SCIENCE PUBLISHERS, 2012. http://dx.doi.org/10.2174/97816080529671110101.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Boer, T. C. de. Heat Transfer to a Dispersed Two Phase Flow and Detailed Quench Front Velocity Research (Nuclear Science and Technology). European Communities / Union (EUR-OP/OOPEC/OPOCE), 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Dispersed phase"

1

Gooch, Jan W. "Dispersed Phase". W Encyclopedic Dictionary of Polymers, 235. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_3836.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Herrera-Ordóñez, Jorge, Enrique Saldívar-Guerra i Eduardo Vivaldo-Lima. "Dispersed-Phase Polymerization Processes". W Handbook of Polymer Synthesis, Characterization, and Processing, 295–315. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118480793.ch14.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Utz, Bruce R., Anthony V. Cugini i Elizabeth A. Frommell. "Dispersed-Phase Catalysis in Coal Liquefaction". W Novel Materials in Heterogeneous Catalysis, 289–99. Washington, DC: American Chemical Society, 1990. http://dx.doi.org/10.1021/bk-1990-0437.ch027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Randrianalisoa, Jaona, Rémi Coquard i Dominique Baillis. "Radiative Transfer in Two-Phase Dispersed Materials". W Advanced Structured Materials, 187–234. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/8611_2010_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Wagner, J. Bruce. "Transport in Materials Containing a Dispersed Second Phase". W Transport in Nonstoichiometric Compounds, 3–16. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2519-2_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Ikuma, Yasuro, Atsushi Yoshimura, Kuniaki Ishida i Wazo Komatsu. "Phase Transformation and Toughening in MgO Dispersed with ZrO2". W Tailoring Multiphase and Composite Ceramics, 295–304. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2233-7_22.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Ishino, Yuichi, Takayuki Maruyama, Toshiyuki Ohsaki, Shigeki Endo, Tasuku Saito i Norio Goshima. "Anhydrous Electrorheological Fluid Using Carbonaceous Particulate as Dispersed Phase". W Progress in Electrorheology, 137–46. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1036-3_10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Taylor, A. M. K. P. "Optically-Based Measurement Techniques for dispersed two Phase Flows". W Combustings Flow Diagnostics, 233–89. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2588-8_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

van Sint Annaland, M., N. G. Deen i J. A. M. Kuipers. "Multi-Level Modelling of Dispersed Gas-Liquid Two-Phase Flows". W Bubbly Flows, 139–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18540-3_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Clare, A. J., i S. A. Fairbairn. "Droplet Dynamics and Heat Transfer in Dispersed Two Phase Flow". W Safety of Thermal Water Reactors, 51–64. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4972-0_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Dispersed phase"

1

Hands, P. J. W., A. K. Kirby i G. D. Love. "Phase modulation with polymer-dispersed liquid crystals". W Optics & Photonics 2005, redaktorzy Mark T. Gruneisen, John D. Gonglewski i Michael K. Giles. SPIE, 2005. http://dx.doi.org/10.1117/12.614433.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Zhang, Mo, Shoubo Wang, Ram S. Mohan, Ovadia Shoham i Haijing Gao. "Shear Effects on Phase Inversion in Oil-Water Flow". W ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52076.

Pełny tekst źródła
Streszczenie:
Oil-water dispersed flow, in which one of the phases either water or oil is dispersed into the other phase, which is the continuous phase, occurs commonly in Petroleum Industry during the production and transportation of crudes. Phase inversion occurs when the dispersed phase grows into the continuous phase and the continuous phase becomes the dispersed phase caused by changes in the composition, interfacial properties and other factors. Production equipment, such as pumps and chokes, generate shear in oil-water mixture flow, which has a strong effect on phase inversion phenomena. In this study, based on the newly acquired data on a gear pump, the relationship between phase inversion region and shear intensity are discussed and the limitation of current phase inversion prediction model is presented.
Style APA, Harvard, Vancouver, ISO itp.
3

Martinache, Frantz. "Spectrally dispersed Fourier-phase analysis for redundant apertures". W SPIE Astronomical Telescopes + Instrumentation, redaktorzy Fabien Malbet, Michelle J. Creech-Eakman i Peter G. Tuthill. SPIE, 2016. http://dx.doi.org/10.1117/12.2233395.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Jacobs, Phd, P. E., Harold R. "MODELING OF MULTIPHASE DISPERSED SYSTEMS-STATE OF THE ART AND FUTURE DIRECTIONS". W International Symposium on Liquid-Liquid Two Phase Flow and Transport Phenomena. Connecticut: Begellhouse, 1997. http://dx.doi.org/10.1615/ichmt.1997.intsymliqtwophaseflowtranspphen.190.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Lin, Yi-Hsin, Chia-Ming Chang, Ramesh Manda, Victor Reshetnyak, Chui Ho Park i Seung Hee Lee. "Origins of Kerr phase and orientational phase in polymer-dispersed liquid crystal". W Liquid Crystals XXI, redaktor Iam Choon Khoo. SPIE, 2017. http://dx.doi.org/10.1117/12.2275579.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Chunfeng Wang, Yuping Lu, Nan Xiao i Chao Cai. "A novel adaptive dispersed phase current differential protection criterion". W 2012 IEEE Power & Energy Society General Meeting. New Energy Horizons - Opportunities and Challenges. IEEE, 2012. http://dx.doi.org/10.1109/pesgm.2012.6344596.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Tan, Chao, Yang Cao i Feng Dong. "Cross Correlation Based Dispersed Phase Velocity Profile Measurement of Two-Phase Pipe Flow". W 2012 IEEE International Instrumentation and Measurement Technology Conference (I2MTC 2012). IEEE, 2012. http://dx.doi.org/10.1109/i2mtc.2012.6305331.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

TSENG, L. K., P. K. WU i G. FAETH. "Dispersed-phase structure of pressure-atomized sprays at various gasdensities". W 30th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-230.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Maxey, M. "Examples of fluid-particle interactions in dispersed two-phase flow". W 30th Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-3691.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Simoes, Marine, Patrick Della Pieta, Franck Godfroy i Olivier Simonin. "Continuum Modeling of the Dispersed Phase in Solid Rocket Motors". W 17th AIAA Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-4698.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Dispersed phase"

1

Hirschon, A. S., R. B. Wilson i O. Ghaly. Highly dispersed catalysts for coal liquefaction. Phase 1 final report, August 23--November 22, 1994. Office of Scientific and Technical Information (OSTI), marzec 1995. http://dx.doi.org/10.2172/132655.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Yan, R., B. Munn i G. Simkovich. High Temperature Oxidation Studies on Alloys Containing Dispersed Phase Particles and Clarification of the Mechanism of Growth of SiO2. Fort Belvoir, VA: Defense Technical Information Center, luty 1989. http://dx.doi.org/10.21236/ada207161.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Andrea Prosperetti. Closure of the Averaged Equations for Disperse Two-Phase Flow by Direct Numerical Simulation: Final Report. Office of Scientific and Technical Information (OSTI), marzec 2006. http://dx.doi.org/10.2172/877953.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Yeh, Gordon C., i Said E. Elghobashi. A Two-Equation Turbulence Model for a Dispersed Two-Phased Flow with Variable Density Fluid and Constant Density Particles. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1985. http://dx.doi.org/10.21236/ada170628.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii