Gotowa bibliografia na temat „Discriminative Pose Robust Descriptors”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Discriminative Pose Robust Descriptors”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Discriminative Pose Robust Descriptors"
Kniaz, V. V., V. V. Fedorenko i N. A. Fomin. "DEEP LEARNING FOR LOWTEXTURED IMAGE MATCHING". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2 (30.05.2018): 513–18. http://dx.doi.org/10.5194/isprs-archives-xlii-2-513-2018.
Pełny tekst źródłaRabba, Salah, Matthew Kyan, Lei Gao, Azhar Quddus, Ali Shahidi Zandi i Ling Guan. "Discriminative Robust Head-Pose and Gaze Estimation Using Kernel-DMCCA Features Fusion". International Journal of Semantic Computing 14, nr 01 (marzec 2020): 107–35. http://dx.doi.org/10.1142/s1793351x20500014.
Pełny tekst źródłaKawulok, Michal, Jakub Nalepa, Jolanta Kawulok i Bogdan Smolka. "Dynamics of facial actions for assessing smile genuineness". PLOS ONE 16, nr 1 (5.01.2021): e0244647. http://dx.doi.org/10.1371/journal.pone.0244647.
Pełny tekst źródłaSanyal, Soubhik, Sivaram Prasad Mudunuri i Soma Biswas. "Discriminative pose-free descriptors for face and object matching". Pattern Recognition 67 (lipiec 2017): 353–65. http://dx.doi.org/10.1016/j.patcog.2017.02.016.
Pełny tekst źródłaSingh, Geetika, i Indu Chhabra. "Discriminative Moment Feature Descriptors for Face Recognition". International Journal of Computer Vision and Image Processing 5, nr 2 (lipiec 2015): 81–97. http://dx.doi.org/10.4018/ijcvip.2015070105.
Pełny tekst źródłaHajraoui, Abdellatif, i Mohamed Sabri. "Generic and Robust Method for Head Pose Estimation". Indonesian Journal of Electrical Engineering and Computer Science 4, nr 2 (1.11.2016): 439. http://dx.doi.org/10.11591/ijeecs.v4.i2.pp439-446.
Pełny tekst źródłaLin, Guojun, Meng Yang, Linlin Shen, Mingzhong Yang i Mei Xie. "Robust and discriminative dictionary learning for face recognition". International Journal of Wavelets, Multiresolution and Information Processing 16, nr 02 (marzec 2018): 1840004. http://dx.doi.org/10.1142/s0219691318400040.
Pełny tekst źródłaSingh, Geetika, i Indu Chhabra. "Integrating Global Zernike and Local Discriminative HOG Features for Face Recognition". International Journal of Image and Graphics 16, nr 04 (październik 2016): 1650021. http://dx.doi.org/10.1142/s0219467816500212.
Pełny tekst źródłaSCHWARTZ, WILLIAM ROBSON, i HELIO PEDRINI. "IMPROVED FRACTAL IMAGE COMPRESSION BASED ON ROBUST FEATURE DESCRIPTORS". International Journal of Image and Graphics 11, nr 04 (październik 2011): 571–87. http://dx.doi.org/10.1142/s0219467811004251.
Pełny tekst źródłaChen, Si, Dong Yan i Yan Yan. "Directional Correlation Filter Bank for Robust Head Pose Estimation and Face Recognition". Mathematical Problems in Engineering 2018 (21.10.2018): 1–10. http://dx.doi.org/10.1155/2018/1923063.
Pełny tekst źródłaRozprawy doktorskie na temat "Discriminative Pose Robust Descriptors"
Ferraz, Colomina Luis. "Viewpoint invariant features and robust monocular Camera pose estimation". Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/368568.
Pełny tekst źródłaCamera pose with respect to a real world scene determines the perspective projection of the scene on the image plane. The analysis of the deformations between pairs of images due to perspective and camera pose have led many Computer Vision researchers to deal with problems such as, the ability to detect and match the same local features in different images or recovering for each image its original camera pose. The difference between both problems lie in the locality of the image information, while for local features we look for local invariance, for camera pose we look for more global information sources, like sets of local features. Local feature detection is a cornerstone of a wide range of Computer Vision applications since it allows to match and localize specific image regions. In the first part of this work local invariance of features is tackled proposing algorithms to improve the robustness to image perturbations, perspective changes and discriminative power from two points of view: (i) accurate detection of non-redundant corner and blob image structures based on their movement along different scales, and (ii) learning robust descriptors. Concretely, we propose three scale invariant detectors, detecting one of them corners and blobs simultaneously with a negligible computational overhead. We also propose one blob affine invariant detector. In terms of descriptors, we propose to learn them using Convolutional Neural Networks and large datasets of annotated image regions under different image conditions. Despite being a topic researched for decades camera pose estimation is still an open challenge. The goal of the Perspective-n-Point (PnP) problem is to estimate the location and orientation of a calibrated camera from n known 3D-to-2D point correspondences between a previously known 3D model of a real scene and 2D features obtained from a single image. In the second part of this thesis camera pose estimation is addressed with novel PnP approaches, which reduces drastically the computational cost allowing real-time applications independently of the number of correspondences. In addition, we provide an integrated outlier rejection mechanism with a negligible computational overhead and a novel method to increase the accuracy by modelling the reprojection error of each correspondence. Finally in the case of complex and huge scenarios, with maybe hundreds of thousands of features, is difficult and computationally expensive to be able to find correct 3D-to-2D correspondences. In this case, a robust and accurate top-down approach for camera pose estimation is proposed. Our approach takes advantage of high-level classifiers, which estimates a rough camera pose, in order to constrain the 3D-to-2D correspondences to be used by our accurate and robust to outliers PnP method.
Sanyal, Soubhik. "Discriminative Descriptors for Unconstrained Face and Object Recognition". Thesis, 2017. http://etd.iisc.ac.in/handle/2005/4177.
Pełny tekst źródłaCzęści książek na temat "Discriminative Pose Robust Descriptors"
Chuang, Meng-Che, Jenq-Neng Hwang i Kresimir Williams. "Automatic Fish Segmentation and Recognition for Trawl-Based Cameras". W Computer Vision, 847–74. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-5204-8.ch034.
Pełny tekst źródłaStreszczenia konferencji na temat "Discriminative Pose Robust Descriptors"
Sanyal, Soubhik, Devraj Mandal i Soma Biswas. "Aligned discriminative pose robust descriptors for face and object recognition". W 2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017. http://dx.doi.org/10.1109/icip.2017.8296395.
Pełny tekst źródłaSanyal, Soubhik, Sivaram Prasad Mudunuri i Soma Biswas. "Discriminative Pose-Free Descriptors for Face and Object Matching". W 2015 IEEE International Conference on Computer Vision (ICCV). IEEE, 2015. http://dx.doi.org/10.1109/iccv.2015.437.
Pełny tekst źródłaSeo, Jeong-Jik, Hyung-Il Kim i Yong Man Ro. "Pose-Robust and Discriminative Feature Representation by Multi-task Deep Learning for Multi-view Face Recognition". W 2015 IEEE International Symposium on Multimedia (ISM). IEEE, 2015. http://dx.doi.org/10.1109/ism.2015.93.
Pełny tekst źródłaNayak, Anshul, Azim Eskandarian, Prasenjit Ghorai i Zachary Doerzaph. "A Comparative Study on Feature Descriptors for Relative Pose Estimation in Connected Vehicles". W ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-70693.
Pełny tekst źródłaZhang, Yichen, Jiehong Lin, Ke Chen, Zelin Xu, Yaowei Wang i Kui Jia. "Manifold-Aware Self-Training for Unsupervised Domain Adaptation on Regressing 6D Object Pose". W Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/193.
Pełny tekst źródłaSarkhel, Ritesh, i Arnab Nandi. "Deterministic Routing between Layout Abstractions for Multi-Scale Classification of Visually Rich Documents". W Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/466.
Pełny tekst źródłaBhabhrawala, Talib, i Venkat Krovi. "Shape Recovery From Medical Image Data Using Extended Superquadrics". W ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84738.
Pełny tekst źródła