Artykuły w czasopismach na temat „Discrete Velocity Boltzmann Schemes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Discrete Velocity Boltzmann Schemes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Hsu, C. T., S. W. Chiang, and K. F. Sin. "A Novel Dynamic Quadrature Scheme for Solving Boltzmann Equation with Discrete Ordinate and Lattice Boltzmann Methods." Communications in Computational Physics 11, no. 4 (2012): 1397–414. http://dx.doi.org/10.4208/cicp.150510.150511s.
Pełny tekst źródłaMischler, Stéphane. "Convergence of Discrete-Velocity Schemes for the Boltzmann Equation." Archive for Rational Mechanics and Analysis 140, no. 1 (1997): 53–77. http://dx.doi.org/10.1007/s002050050060.
Pełny tekst źródłaBuet, C. "Conservative and Entropy Schemes for Boltzmann Collision Operator of Polyatomic Gases." Mathematical Models and Methods in Applied Sciences 07, no. 02 (1997): 165–92. http://dx.doi.org/10.1142/s0218202597000116.
Pełny tekst źródłaDiaz, Manuel A., Min-Hung Chen, and Jaw-Yen Yang. "High-Order Conservative Asymptotic-Preserving Schemes for Modeling Rarefied Gas Dynamical Flows with Boltzmann-BGK Equation." Communications in Computational Physics 18, no. 4 (2015): 1012–49. http://dx.doi.org/10.4208/cicp.171214.210715s.
Pełny tekst źródłaMATTILA, KEIJO K., DIOGO N. SIEBERT, LUIZ A. HEGELE, and PAULO C. PHILIPPI. "HIGH-ORDER LATTICE-BOLTZMANN EQUATIONS AND STENCILS FOR MULTIPHASE MODELS." International Journal of Modern Physics C 24, no. 12 (2013): 1340006. http://dx.doi.org/10.1142/s0129183113400068.
Pełny tekst źródłaWang, Liang, Xuhui Meng, Hao-Chi Wu, Tian-Hu Wang, and Gui Lu. "Discrete effect on single-node boundary schemes of lattice Bhatnagar–Gross–Krook model for convection-diffusion equations." International Journal of Modern Physics C 31, no. 01 (2019): 2050017. http://dx.doi.org/10.1142/s0129183120500175.
Pełny tekst źródłaMieussens, Luc. "Discrete-Velocity Models and Numerical Schemes for the Boltzmann-BGK Equation in Plane and Axisymmetric Geometries." Journal of Computational Physics 162, no. 2 (2000): 429–66. http://dx.doi.org/10.1006/jcph.2000.6548.
Pełny tekst źródłaAristov, V. V., O. V. Ilyin, and O. A. Rogozin. "Kinetic multiscale scheme based on the discrete-velocity and lattice-Boltzmann methods." Journal of Computational Science 40 (February 2020): 101064. http://dx.doi.org/10.1016/j.jocs.2019.101064.
Pełny tekst źródłaBuet, C. "A discrete-velocity scheme for the Boltzmann operator of rarefied gas dynamics." Transport Theory and Statistical Physics 25, no. 1 (1996): 33–60. http://dx.doi.org/10.1080/00411459608204829.
Pełny tekst źródłaWu, Junlin, Zhihui Li, Aoping Peng, and Xinyu Jiang. "Numerical Simulations of Unsteady Flows From Rarefied Transition to Continuum Using Gas-Kinetic Unified Algorithm." Advances in Applied Mathematics and Mechanics 7, no. 5 (2015): 569–96. http://dx.doi.org/10.4208/aamm.2014.m523.
Pełny tekst źródłaWANG, Y., Y. L. HE, T. S. ZHAO, G. H. TANG, and W. Q. TAO. "IMPLICIT-EXPLICIT FINITE-DIFFERENCE LATTICE BOLTZMANN METHOD FOR COMPRESSIBLE FLOWS." International Journal of Modern Physics C 18, no. 12 (2007): 1961–83. http://dx.doi.org/10.1142/s0129183107011868.
Pełny tekst źródłaYang, Jaw-Yen, Bagus Putra Muljadi, Zhi-Hui Li, and Han-Xin Zhang. "A Direct Solver for Initial Value Problems of Rarefied Gas Flows of Arbitrary Statistics." Communications in Computational Physics 14, no. 1 (2013): 242–64. http://dx.doi.org/10.4208/cicp.290112.030812a.
Pełny tekst źródłaPAN, X. F., AIGUO XU, GUANGCAI ZHANG, and SONG JIANG. "LATTICE BOLTZMANN APPROACH TO HIGH-SPEED COMPRESSIBLE FLOWS." International Journal of Modern Physics C 18, no. 11 (2007): 1747–64. http://dx.doi.org/10.1142/s0129183107011716.
Pełny tekst źródłaZhai, Qinglan, Song Zheng, and Lin Zheng. "A kinetic theory based thermal lattice Boltzmann equation model." International Journal of Modern Physics C 28, no. 04 (2017): 1750047. http://dx.doi.org/10.1142/s0129183117500474.
Pełny tekst źródłaSun, Yifang, Sen Zou, Guang Zhao, and Bei Yang. "THE IMPROVEMENT AND REALIZATION OF FINITE-DIFFERENCE LATTICE BOLTZMANN METHOD." Aerospace technic and technology, no. 1 (February 26, 2021): 4–13. http://dx.doi.org/10.32620/aktt.2021.1.01.
Pełny tekst źródłaGan, Yanbiao, Aiguo Xu, Guangcai Zhang, Junqi Wang, Xijun Yu, and Yang Yang. "Lattice Boltzmann kinetic modeling and simulation of thermal liquid–vapor system." International Journal of Modern Physics C 25, no. 12 (2014): 1441002. http://dx.doi.org/10.1142/s0129183114410022.
Pełny tekst źródłaKlar, Axel. "Relaxation Scheme for a Lattice–Boltzmann-type Discrete Velocity Model and Numerical Navier–Stokes Limit." Journal of Computational Physics 148, no. 2 (1999): 416–32. http://dx.doi.org/10.1006/jcph.1998.6123.
Pełny tekst źródłaXu, Lei, Wu Zhang, Zhengzheng Yan, Zheng Du, and Rongliang Chen. "A novel median dual finite volume lattice Boltzmann method for incompressible flows on unstructured grids." International Journal of Modern Physics C 31, no. 12 (2020): 2050173. http://dx.doi.org/10.1142/s0129183120501739.
Pełny tekst źródłaFu, S. C., R. M. C. So, and W. W. F. Leung. "A Discrete Flux Scheme for Aerodynamic and Hydrodynamic Flows." Communications in Computational Physics 9, no. 5 (2011): 1257–83. http://dx.doi.org/10.4208/cicp.311009.241110s.
Pełny tekst źródłaWatanabe, Seiya, Changhong Hu, and Takayuki Aoki. "Coupled Lattice Boltzmann and Discrete Element Simulations of Ship-Ice Interactions." IOP Conference Series: Materials Science and Engineering 1288, no. 1 (2023): 012015. http://dx.doi.org/10.1088/1757-899x/1288/1/012015.
Pełny tekst źródłaKrivovichev, Gerasim V., and Elena S. Bezrukova. "Analysis of Discrete Velocity Models for Lattice Boltzmann Simulations of Compressible Flows at Arbitrary Specific Heat Ratio." Computation 11, no. 7 (2023): 138. http://dx.doi.org/10.3390/computation11070138.
Pełny tekst źródłaLiu, Bowen, and Weiping Shi. "A Non-Equilibrium Interpolation Scheme for IB-LBM Optimized by Approximate Force." Axioms 12, no. 3 (2023): 298. http://dx.doi.org/10.3390/axioms12030298.
Pełny tekst źródłaGuo, Wenqiang, and Guoxiang Hou. "Three-Dimensional Simulations of Anisotropic Slip Microflows Using the Discrete Unified Gas Kinetic Scheme." Entropy 24, no. 7 (2022): 907. http://dx.doi.org/10.3390/e24070907.
Pełny tekst źródłaKoellermeier, Julian, and Manuel Torrilhon. "Numerical Study of Partially Conservative Moment Equations in Kinetic Theory." Communications in Computational Physics 21, no. 4 (2017): 981–1011. http://dx.doi.org/10.4208/cicp.oa-2016-0053.
Pełny tekst źródłaVarmazyar, Mostafa, and Majid Bazargan. "Generalized Coordinate Transformation for Lattice Boltzmann Equation Using TTM Structured Grid Generation." Advanced Materials Research 433-440 (January 2012): 3371–77. http://dx.doi.org/10.4028/www.scientific.net/amr.433-440.3371.
Pełny tekst źródłaGoodarzi, M., M. R. Safaei, A. Karimipour, et al. "Comparison of the Finite Volume and Lattice Boltzmann Methods for Solving Natural Convection Heat Transfer Problems inside Cavities and Enclosures." Abstract and Applied Analysis 2014 (2014): 1–15. http://dx.doi.org/10.1155/2014/762184.
Pełny tekst źródłaCheng, Yongguang, Luoding Zhu, and Chunze Zhang. "Numerical Study of Stability and Accuracy of the Immersed Boundary Method Coupled to the Lattice Boltzmann BGK Model." Communications in Computational Physics 16, no. 1 (2014): 136–68. http://dx.doi.org/10.4208/cicp.260313.291113a.
Pełny tekst źródłaMoufekkir, F., M. A. Moussaoui, A. Mezrhab, and H. Naji. "Computation of coupled double-diffusive convection–radiation including lattice Boltzmann simulation of fluid flow." Journal of Fluid Mechanics 728 (July 3, 2013): 146–62. http://dx.doi.org/10.1017/jfm.2013.282.
Pełny tekst źródłaWang, Peng, Lianhua Zhu, Zhaoli Guo, and Kun Xu. "A Comparative Study of LBE and DUGKS Methods for Nearly Incompressible Flows." Communications in Computational Physics 17, no. 3 (2015): 657–81. http://dx.doi.org/10.4208/cicp.240614.171014a.
Pełny tekst źródłaWu, Jun-Lin, Zhi-Hui Li, Ao-Ping Peng, Xing-Cai Pi, and Xin-Yu Jiang. "Utility computable modeling of a Boltzmann model equation for bimolecular chemical reactions and numerical application." Physics of Fluids 34, no. 4 (2022): 046111. http://dx.doi.org/10.1063/5.0088440.
Pełny tekst źródłaYahia, Eman, William Schupbach, and Kannan N. Premnath. "Three-Dimensional Central Moment Lattice Boltzmann Method on a Cuboid Lattice for Anisotropic and Inhomogeneous Flows." Fluids 6, no. 9 (2021): 326. http://dx.doi.org/10.3390/fluids6090326.
Pełny tekst źródłaSu, Yan, Tiniao Ng, Yinping Zhang, and Jane H. Davidson. "Three dimensional thermal diffusion in anisotropic heterogeneous structures simulated by a non-dimensional lattice Boltzmann method with a controllable structure generation scheme based on discrete Gaussian quadrature space and velocity." International Journal of Heat and Mass Transfer 108 (May 2017): 386–401. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.12.023.
Pełny tekst źródłaЗипунова, Елизавета Вячеславовна, Анастасия Юрьевна Перепёлкина, and Андрей Владимирович Закиров. "Development of the LBM non-isothermal flows with arbitrarily large Mach number." Вычислительные технологии, no. 1(26) (April 2, 2021): 62–71. http://dx.doi.org/10.25743/ict.2021.26.1.005.
Pełny tekst źródłaGÖRSCH, D. "GENERALIZED DISCRETE VELOCITY MODELS." Mathematical Models and Methods in Applied Sciences 12, no. 01 (2002): 49–75. http://dx.doi.org/10.1142/s0218202502001544.
Pełny tekst źródłaSimonis, Stephan, Martin Frank, and Mathias J. Krause. "On relaxation systems and their relation to discrete velocity Boltzmann models for scalar advection–diffusion equations." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, no. 2175 (2020): 20190400. http://dx.doi.org/10.1098/rsta.2019.0400.
Pełny tekst źródłaBernhoff, Niclas. "Boundary Layers and Shock Profiles for the Broadwell Model." International Journal of Differential Equations 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/5801728.
Pełny tekst źródłaIlyin, Oleg. "Discrete Velocity Boltzmann Model for Quasi-Incompressible Hydrodynamics." Mathematics 9, no. 9 (2021): 993. http://dx.doi.org/10.3390/math9090993.
Pełny tekst źródłaBaumann, G., and T. F. Nonnenmacher. "Bracket formulation for discrete two-velocity Boltzmann equations." Physics Letters A 122, no. 3-4 (1987): 149–52. http://dx.doi.org/10.1016/0375-9601(87)90794-8.
Pełny tekst źródłaBeale, J. Thomas. "Large-time behavior of discrete velocity boltzmann equations." Communications In Mathematical Physics 106, no. 4 (1986): 659–78. http://dx.doi.org/10.1007/bf01463401.
Pełny tekst źródłaDubois, François, Tony Fevrier, and Benjamin Graille. "Lattice Boltzmann Schemes with Relative Velocities." Communications in Computational Physics 17, no. 4 (2015): 1088–112. http://dx.doi.org/10.4208/cicp.2014.m394.
Pełny tekst źródłaBELLOUQUID, A. "A DIFFUSIVE LIMIT FOR NONLINEAR DISCRETE VELOCITY MODELS." Mathematical Models and Methods in Applied Sciences 13, no. 01 (2003): 35–58. http://dx.doi.org/10.1142/s0218202503002374.
Pełny tekst źródłaViggen, Erlend Magnus. "Sound Propagation Properties of the Discrete-Velocity Boltzmann Equation." Communications in Computational Physics 13, no. 3 (2013): 671–84. http://dx.doi.org/10.4208/cicp.271011.020212s.
Pełny tekst źródłaFeldman, Mikhail, and Seung-Yeal Ha. "Nonlinear Functionals of Multi-D Discrete Velocity Boltzmann Equations." Journal of Statistical Physics 114, no. 3/4 (2004): 1015–33. http://dx.doi.org/10.1023/b:joss.0000012515.85916.2a.
Pełny tekst źródłaCornille, H. "Exact solutions for nonconservative two-velocity discrete Boltzmann models." Journal of Mathematical Physics 39, no. 4 (1998): 2004–18. http://dx.doi.org/10.1063/1.532274.
Pełny tekst źródłaEuler, Norbert, and Ove Lindblom. "On discrete velocity Boltzmann equations and the Painlevé analysis." Nonlinear Analysis: Theory, Methods & Applications 47, no. 2 (2001): 1407–12. http://dx.doi.org/10.1016/s0362-546x(01)00276-0.
Pełny tekst źródłaPłatkowski, T., and W. Waluś. "An efficient discrete-velocity method for the Boltzmann equation." Computer Physics Communications 121-122 (September 1999): 717. http://dx.doi.org/10.1016/s0010-4655(06)70120-5.
Pełny tekst źródłaWagner, Wolfgang. "Approximation of the Boltzmann equation by discrete velocity models." Journal of Statistical Physics 78, no. 5-6 (1995): 1555–70. http://dx.doi.org/10.1007/bf02180142.
Pełny tekst źródłaCornille, Henri. "Two-velocity discrete boltzmann models: Positivity and theH-Theorem." Letters in Mathematical Physics 19, no. 3 (1990): 211–16. http://dx.doi.org/10.1007/bf01039314.
Pełny tekst źródłaANDALLAH, LAEK S., and HANS BABOVSKY. "A DISCRETE BOLTZMANN EQUATION BASED ON HEXAGONS." Mathematical Models and Methods in Applied Sciences 13, no. 11 (2003): 1537–63. http://dx.doi.org/10.1142/s0218202503003021.
Pełny tekst źródłaDubois, François, and Pierre Lallemand. "On Triangular Lattice Boltzmann Schemes for Scalar Problems." Communications in Computational Physics 13, no. 3 (2013): 649–70. http://dx.doi.org/10.4208/cicp.381011.270112s.
Pełny tekst źródła