Gotowa bibliografia na temat „Discrete power switching devices”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Discrete power switching devices”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Discrete power switching devices"
Nechay, Bettina, Megan Snook, Harold Hearne, Ty McNutt, Victor Veliadis, Sharon Woodruff, R. S. Howell, David Giorgi, Joseph White i Stuart Davis. "High-Yield 4H-SiC Thyristors for Wafer-Scale Interconnection". Materials Science Forum 717-720 (maj 2012): 1171–74. http://dx.doi.org/10.4028/www.scientific.net/msf.717-720.1171.
Pełny tekst źródłaZhang, Wenli, Zhengyang Liu, Fred Lee, Shuojie She, Xiucheng Huang i Qiang Li. "A Gallium Nitride-Based Power Module for Totem-Pole Bridgeless Power Factor Correction Rectifier". International Symposium on Microelectronics 2015, nr 1 (1.10.2015): 000324–29. http://dx.doi.org/10.4071/isom-2015-wp11.
Pełny tekst źródłaShahed, Md Tanvir, i A. B. M. Harun-Ur Rashid. "An Improved Topology of Isolated Bidirectional Resonant DC-DC Converter Based on Wide Bandgap Transistors for Electric Vehicle Onboard Chargers". International Transactions on Electrical Energy Systems 2023 (2.03.2023): 1–18. http://dx.doi.org/10.1155/2023/2609168.
Pełny tekst źródłaNepsha, Fedor, i Roman Belyaevsky. "Development of Interrelated Voltage Regulation System for Coal Mines Energy Efficiency Improving". E3S Web of Conferences 41 (2018): 03013. http://dx.doi.org/10.1051/e3sconf/20184103013.
Pełny tekst źródłaLu, Xiang, Volker Pickert, Maher Al-Greer, Cuili Chen, Xiang Wang i Charalampos Tsimenidis. "Temperature Estimation of SiC Power Devices Using High Frequency Chirp Signals". Energies 14, nr 16 (11.08.2021): 4912. http://dx.doi.org/10.3390/en14164912.
Pełny tekst źródłaRen, Jie, i Jian She Tian. "Simulation on Multi-Objective Wind Power Integration Using Genetic Algorithm with Adaptive Weight". Advanced Materials Research 986-987 (lipiec 2014): 529–32. http://dx.doi.org/10.4028/www.scientific.net/amr.986-987.529.
Pełny tekst źródłaKim, Woo Seok, Minju Jeong, Sungcheol Hong, Byungkook Lim i Sung Il Park. "Fully Implantable Low-Power High Frequency Range Optoelectronic Devices for Dual-Channel Modulation in the Brain". Sensors 20, nr 13 (29.06.2020): 3639. http://dx.doi.org/10.3390/s20133639.
Pełny tekst źródłaMishra, Sanhita, Sarat Chandra Swain i Ritesh Dash. "Switching transient analysis for low voltage distribution cable". Open Engineering 12, nr 1 (1.01.2022): 29–37. http://dx.doi.org/10.1515/eng-2022-0004.
Pełny tekst źródłaMcPherson, B., B. Passmore, P. Killeen, D. Martin, A. Barkley i T. McNutt. "Package design and development of a low cost high temperature (250°C), high current (50+A), low inductance discrete power package for advanced Silicon Carbide (SiC) and Gallium Nitride (GaN) devices". International Symposium on Microelectronics 2013, nr 1 (1.01.2013): 000592–97. http://dx.doi.org/10.4071/isom-2013-wa63.
Pełny tekst źródłaRoberts, J., A. Mizan i L. Yushyna. "Optimized High Power GaN Transistors". Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2015, HiTEN (1.01.2015): 000195–99. http://dx.doi.org/10.4071/hiten-session6-paper6_1.
Pełny tekst źródłaRozprawy doktorskie na temat "Discrete power switching devices"
Chin, Shaoan. "MOS-bipolar composite power switching devices". Diss., Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/54275.
Pełny tekst źródłaPh. D.
Wang, Jue. "Silicon carbide power devices". Thesis, Heriot-Watt University, 2000. http://hdl.handle.net/10399/579.
Pełny tekst źródłaSmecher, Graeme. "Discrete-time crossing-point estimation for switching power converters". Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=115995.
Pełny tekst źródłaFor example, an audio amplifier typically receives its input from a digital source decoded into regular samples (e.g. from MP3, DVD, or CD audio), or obtained from a continuous-time signal using an analog-to-digital converter (ADC). In a switching amplifier based on Pulse-Width Modulation (PWM) or Click Modulation (CM), a signal derived from the sampled audio is compared against a deterministic reference waveform; the crossing points of these signals control a switching power stage. Crossing-point estimates must be accurate in order to preserve audio quality. They must also be simple to calculate, in order to minimize processing requirements and delays.
We consider estimating the crossing points of a known function and a Gaussian random process, given uniformly-spaced, noisy samples of the random process for which the second-order statistics are assumed to be known. We derive the Maximum A-Posteriori (MAP) estimator, along with a Minimum Mean-Squared Error (MMSE) estimator which we show to be a computationally efficient approximation to the MAP estimator.
We also derive the Cramer-Rao bound (CRB) on estimator variance for the problem, which allows practical estimators to be evaluated against a best-case performance limit. We investigate several comparison estimators chosen from the literature. The structure of the MMSE estimator and comparison estimators is shown to be very similar, making the difference in computational expense between each technique largely dependent on the cost of evaluating various (generally non-linear) functions.
Simulations for both Pulse-Width and Click Modulation scenarios show the MMSE estimator performs very near to the Cramer-Rao bound and outperforms the alternative estimators selected from the literature.
Witcher, Joseph Brandon. "Methodology for Switching Characterization of Power Devices and Modules". Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/31205.
Pełny tekst źródłaMaster of Science
Kim, Alexander. "Switching-Loss Measurement of Current and Advanced Switching Devices for Medium-Power Systems". Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/34568.
Pełny tekst źródłaMaster of Science
Finney, Stephen Jon. "The reduction of switching losses in power semiconductor devices". Thesis, Heriot-Watt University, 1994. http://hdl.handle.net/10399/1345.
Pełny tekst źródłaFinney, Adrian David. "Physical constraints on the switching speeds of power transistors". Thesis, Lancaster University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306126.
Pełny tekst źródłaChen, Cheng. "Studies of SiC power devices potential in power electronics for avionic applications". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLN045.
Pełny tekst źródłaMy PhD work in laboratories SATIE of ENS de Cachan and Ampère of INSA de Lyon is a part of project GEstioN OptiMisée de l’Energie (GENOME) to investigate the potential of some Silicon carbide (SiC) power devices (JFET, MOSFET and BJT) in power electronic converters dedicated to aeronautical applications for the development of more electric aircraft.The first part of my work investigates the robustness of MOSFET and SiC BJT subjected to short circuit. For SiC MOSFETs, under repetition of short-term short circuit, a gate leakage current seems to be an indicator of aging. We define repetitive critical energy to evaluate the robustness for repetition of short circuit. The effect of room temperature on the robustness of SiC MOSFET and BJT under short circuit stress is not evident. The capability of short circuit is not improved by reducing gate leakage current for MOSFET, while BJT shows a better robustness by limiting base current. For MSOFET, a significant increase in gate leakage current accelerates failure for DC voltage from 600V to 750V. After opening Rohm MOSFETs with a short circuit between gate and source after failure, the fusion of metallization is considered as the raison of failure. In this particular mode of failure, the short circuit between gate and source self-protects the chip and opens drain short current.The second part of the thesis is devoted to the study of SiC JFET, MSOFET and BJT in avalanche mode. The SemiSouth JFET and Fairchild BJT exhibit excellent robustness in the avalanche. On the contrary, the avalanche test reveals the fragility of Rohm MOSFET since it failed before entering avalanche mode. The failure of Rohm MOSFET and its low robustness in avalanche mode are related to the activation of parasitic bipolar transistor. The avalanche current is a very small part of the current in the inductor. It flows from the drain/collector to the gate/base to drive the transistor in linear mode. A high-value gate resistance effectively reduces the avalanche current through the drain-gate junction to the JFET.The third part of this thesis concerns the study of switching performance of SiC BJT at high switching frequency. We initially attempted to validate the switching loss measurements. After checking the accuracy of the electrical measurement compared to calorimetric measurement, electrical measurement is adopted for switching power losses but requires a lot of attention. Thanks to high carrier charge mobility of SiC material, SiC BJT does not require the use of anti-saturation diode. Finally, no significant variation in switching losses is observed over an ambient temperature range from 25°C to 200°C.The fourth part focuses on the study of SiC MOSFET behavior under HTB (High Temperature Reverse Bias) and in diode-less application in which the transistors conduct a reverse current through the channel, except for the dead time during which the body diode ensure the continuity of the current in the load. The results show that the body diode has no significant degradation when the reverse conduction of the MOSFET. Cree MOSFET under test shows a drift of the threshold voltage and a degradation of the gate oxide which are more significant during the tests in the diode-less application than under HTRB test. The drift of the threshold voltage is probably due to intense electric field in the oxide and the charge traps in the gate oxide
Chen, Wei. "Fast switching low power loss devices for high voltage integrated circuits". Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262863.
Pełny tekst źródłaSukumaran, Deepti. "Design and Fabrication of Optically Activated Silicon Carbide High-Power Switching Devices". University of Cincinnati / OhioLINK, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1007158711.
Pełny tekst źródłaKsiążki na temat "Discrete power switching devices"
J, Watson. Analog and switching circuit design: Using integrated and discrete devices. Bristol: Adam Hilger, 1987.
Znajdź pełny tekst źródłaJ, Watson. Analog and switching circuit design: Using integrated and discrete devices. Wyd. 2. New York: Wiley, 1989.
Znajdź pełny tekst źródłaJ, Watson. Analog and switching circuit design: Using integrated and discrete devices. Wyd. 2. Chichester: Wiley, 1991.
Znajdź pełny tekst źródłaJamieson, David James. The thermal simulation of power electronic switching devices and their associated heatsinks. Salford: University of Salford, 1995.
Znajdź pełny tekst źródłaNelms, R. M. Design of power electronics for TVC & EMA systems: Final report. [Washington, DC: National Aeronautics and Space Administration, 1994.
Znajdź pełny tekst źródłaW, Flynn B., i Macpherson D. E, red. Switched mode power supplies: Design and construction. Taunton, England: Research Studies Press, 1992.
Znajdź pełny tekst źródłaWhittington, H. W. Switched mode power supplies: Design and construction. Wyd. 2. Taunton, Somerset, England: Research Studies Press, 1997.
Znajdź pełny tekst źródłaProhorov, Viktor. Semiconductor converters of electrical energy. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1019082.
Pełny tekst źródłaThe Switching Function (Circuits, Devices and Systems) (Circuits, Devices and Systems). Institution of Engineering and Technology, 2006.
Znajdź pełny tekst źródłaGurevich, Vladimir. Electronic Devices on Discrete Components for Industrial and Power Engineering. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaCzęści książek na temat "Discrete power switching devices"
Bausière, Robert, Francis Labrique i Guy Séguier. "Switching Power Semiconductor Devices". W Power Electronic Converters, 17–109. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-52454-7_2.
Pełny tekst źródłaIsberg, Jan. "High-Power Switching Devices". W CVD Diamond for Electronic Devices and Sensors, 275–88. Chichester, UK: John Wiley & Sons, Ltd, 2009. http://dx.doi.org/10.1002/9780470740392.ch12.
Pełny tekst źródłaNiayesh, Kaveh, i Magne Runde. "Application of Switching Devices in Power Networks". W Power Switching Components, 59–133. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51460-4_3.
Pełny tekst źródłaNiayesh, Kaveh, i Magne Runde. "Future Trends and Developments of Power Switching Devices". W Power Switching Components, 225–46. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51460-4_6.
Pełny tekst źródłaWilliams, B. W. "Cooling of Power Switching Semiconductor Devices". W Power Electronics, 90–110. London: Macmillan Education UK, 1987. http://dx.doi.org/10.1007/978-1-349-18525-2_5.
Pełny tekst źródłaNiayesh, Kaveh, i Magne Runde. "Service Experience and Diagnostic Testing of Power Switching Devices". W Power Switching Components, 187–223. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51460-4_5.
Pełny tekst źródłaChvála, Aleš, Davide Cristaldi, Daniel Donoval, Giuseppe Greco, Juraj Marek, Marián Molnár, Patrik Príbytný, Angelo Raciti i Giovanni Vinci. "Discrete Power Devices and Power Modules". W Smart Systems Integration and Simulation, 91–143. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27392-1_5.
Pełny tekst źródłaWilliams, B. W. "Power Switching Devices and their Static Electrical Characteristics". W Power Electronics, 16–52. London: Macmillan Education UK, 1987. http://dx.doi.org/10.1007/978-1-349-18525-2_3.
Pełny tekst źródłaBatarseh, Issa, i Ahmad Harb. "Review of Switching Concepts and Power Semiconductor Devices". W Power Electronics, 25–91. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68366-9_2.
Pełny tekst źródłaWilliams, B. W. "Electrical Ratings and Characteristics of Power Semiconductor Switching Devices". W Power Electronics, 53–89. London: Macmillan Education UK, 1987. http://dx.doi.org/10.1007/978-1-349-18525-2_4.
Pełny tekst źródłaStreszczenia konferencji na temat "Discrete power switching devices"
Calder, H., M. Shahbazi i A. Horsfall. "Optimal device selection tool for discrete SiC MOSFETs considering switching loss challenges of paralleled devices". W 11th International Conference on Power Electronics, Machines and Drives (PEMD 2022). Institution of Engineering and Technology, 2022. http://dx.doi.org/10.1049/icp.2022.1150.
Pełny tekst źródłaKearney, Ian. "Analysis of Power MOSFET Active Temperature Cycling Failures". W ISTFA 2013. ASM International, 2013. http://dx.doi.org/10.31399/asm.cp.istfa2013p0283.
Pełny tekst źródłaYang, Yizhang, Sridhar Sundaram, Gamal Refai-Ahmed i Maxat Touzelbaev. "Fast Prediction of Temperature Evolution in Electronic Devices for Run-Time Thermal Management Applications". W ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40462.
Pełny tekst źródłaGradl, Christoph, Ivo Kovacic i Rudolf Scheidl. "Development of an Energy Saving Hydraulic Stepper Drive". W 8th FPNI Ph.D Symposium on Fluid Power. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fpni2014-7809.
Pełny tekst źródłaNovotny, R. A., R. L. Pawelski, R. S. Veach i A. L. Lentine. "Demonstration of a free-space 2×2 switching mode using symmetric self-electro-optic-effect device modulators and detectors". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.wb1.
Pełny tekst źródłaAceves, A. B., C. De Angelis, G. G. Luther, Alexander M. Rubenchik i Sergei K. Turitsyn. "Steering of Multidimensional Solitons in Nonlinear Fiber Arrays". W Nonlinear Guided Waves and Their Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/nlgw.1995.nsab1.
Pełny tekst źródłaRobertson, B., J. Turunen, H. Ichikawa, J. M. Miller, M. R. Taghizadeh i A. Vasara. "Hybrid Kinoform Fan-Out Elements in Dichromated Gelatin". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.pdp17.
Pełny tekst źródła"Discrete power semiconductor devices". W 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551). IEEE, 2004. http://dx.doi.org/10.1109/pesc.2004.1355299.
Pełny tekst źródłaIshida, Masahiro, Yasuhiro Uemoto, Tetsuzo Ueda, Tsuyoshi Tanaka i Daisuke Ueda. "GaN power switching devices". W 2010 International Power Electronics Conference (IPEC - Sapporo). IEEE, 2010. http://dx.doi.org/10.1109/ipec.2010.5542030.
Pełny tekst źródłaRajkumar, N., J. N. McMullin, B. P. Keyworth i R. I. MacDonald. "3 X 3 Optoelectronic Cross-Bar Switch Using Vertical Cavity Surface Emitting Laser Arrays". W Diffractive Optics and Micro-Optics. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/domo.1996.dmd.4.
Pełny tekst źródłaRaporty organizacyjne na temat "Discrete power switching devices"
Baliga, B. J., B. Vijay, P. M. Shenoy, R. F. Davis i H. S. Tomozawa. SiC Discrete Power Devices. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1997. http://dx.doi.org/10.21236/ada319706.
Pełny tekst źródłaBaliga, B. J., R. K. Chilukuri, P. M. Shenoy, B. Vijay i R. F. Davis. SiC Discrete Power Devices. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1999. http://dx.doi.org/10.21236/ada358651.
Pełny tekst źródłaChilukuri, Ravi K., i B. J. Baliga. SiC Discrete Power Devices. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2001. http://dx.doi.org/10.21236/ada389252.
Pełny tekst źródłaCooper, James A., Michael A. Capano, Leonard C. Feldman, Marek Skowronski i John R. Williams. Development of Process Technologies for High-Performance MOS-Based SiC Power Switching Devices. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2007. http://dx.doi.org/10.21236/ada473280.
Pełny tekst źródła