Gotowa bibliografia na temat „Discrete power switching devices”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Discrete power switching devices”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Discrete power switching devices"

1

Nechay, Bettina, Megan Snook, Harold Hearne, et al. "High-Yield 4H-SiC Thyristors for Wafer-Scale Interconnection." Materials Science Forum 717-720 (May 2012): 1171–74. http://dx.doi.org/10.4028/www.scientific.net/msf.717-720.1171.

Pełny tekst źródła
Streszczenie:
Modern power conditioning systems require large active area devices which can support high currents. Though the breakdown and thermal properties of SiC make it an excellent choice for power switching applications, active area size is currently limited due to material and processing defects. One alternative is to parallel discrete diced die to achieve large active areas. However, this increases cost and complexity through dicing, soldering, and forming multiple wire bonds. Furthermore, paralleling discrete devices increases package volume/weight and reduces power density. To overcome these issues and achieve devices of high current switching capabilities, thyristors were designed and fabricated for the purpose of wafer-scale interconnection - which avoids the need of dicing and bonding and can achieve significant current density improvement over the paralleled diced device approach. Discrete thyristors fabricated for interconnection exhibited excellent yields and good uniformity of both blocking and on-state characteristics, showing great promise for large-scale interconnection.
Style APA, Harvard, Vancouver, ISO itp.
2

Zhang, Wenli, Zhengyang Liu, Fred Lee, Shuojie She, Xiucheng Huang, and Qiang Li. "A Gallium Nitride-Based Power Module for Totem-Pole Bridgeless Power Factor Correction Rectifier." International Symposium on Microelectronics 2015, no. 1 (2015): 000324–29. http://dx.doi.org/10.4071/isom-2015-wp11.

Pełny tekst źródła
Streszczenie:
The totem-pole bridgeless power factor correction (PFC) rectifier has recently gained popularity for ac-dc power conversion. The emerging gallium nitride (GaN) high-electron-mobility transistor (HEMT), having a small body diode reverse recovery effect and low switching loss, is a promising device for use in the totem-pole approach. The design, fabrication, and thermal analysis of a GaN-based full-bridge multi-chip module (MCM) for totem-pole bridgeless PFC rectifier are introduced in this work. Four cascode GaN devices using the same pair of high-voltage GaN HEMT and low-voltage silicon (Si) power metal-oxide-semiconductor field-effect transistor (MOSFET) chips, as used in the discrete TO-220 package, were integrated onto one aluminum nitride direct-bonded-copper (AlN-DBC) substrate in a newly designed MCM. This integrated power module achieves the same function as four discrete devices mounted on the circuit board. In this module design, the Si and GaN bare die were arranged in a stack-die format for each cascode device to eliminate the critical common source inductance, and thus to reduce parasitic ringing at turn-off transients. In addition, an extra capacitor was added in parallel with the drain-source terminals of the Si MOSFET in each cascode GaN device to compensate for the mismatched junction capacitance between the Si MOSFET and GaN HEMT, which could accomplish the internal zero-voltage switching of the GaN device and reduce its turn-on loss. The AlN-DBC substrate and the flip-chip format were also applied in the module design. This GaN-based MCM shows an improved heat dissipation capability based on the thermal analysis and comparison with the discrete GaN device. The totem-pole bridgeless PFC rectifier built using this integrated power module is expected to have a peak efficiency of higher than 99% with a projected power density greater than 400 W/in3.
Style APA, Harvard, Vancouver, ISO itp.
3

Shahed, Md Tanvir, and A. B. M. Harun-Ur Rashid. "An Improved Topology of Isolated Bidirectional Resonant DC-DC Converter Based on Wide Bandgap Transistors for Electric Vehicle Onboard Chargers." International Transactions on Electrical Energy Systems 2023 (March 2, 2023): 1–18. http://dx.doi.org/10.1155/2023/2609168.

Pełny tekst źródła
Streszczenie:
This article proposes an improved topology for an isolated bidirectional resonant DC-DC converter for electric vehicle (EV) onboard chargers. As opposed to the conventional capacitor-inductor-inductor-inductor-capacitor (CLLLC) resonant converter, the proposed converter’s resonant circuit is composed of a capacitor-inductor-inductor-inductor (CLLL) structure, whose inductances, except the capacitor, can be fully integrated with the leakage and mutual inductances of the high-frequency transformer (HF). Therefore, this offers a smaller size, lower costs, minimal power loss, and eventually higher efficiency. Again, the proposed converter design is based on wide bandgap (WBG) transistor switches that operate at MHz-level switching frequency to achieve high power density, high efficiency, and high compactness. A discrete-time proportional integral derivative (PID) controller has been designed using the phase-shifted pulse width modulation (PSPWM) technique to assure closed-loop control of the proposed CLLL converter. The PID controller parameters have been optimized using both the genetic algorithm (GA) and particle swarm optimization (PSO) algorithm and a comparative analysis has been presented between the two algorithms. To achieve fast switching with very little switching loss, the converter is simulated with several wide bandgap (WBG) switching devices. A performance comparison with conventional Si-based switching devices is also provided. A precise power loss model of the semiconductor switches has been devised from the manufacturer’s datasheet to achieve a perfect thermal design for the converter. A 5 kW CLLL converter with an input range of 400–460 V direct current (DC) and an output range of 530–610 V DC, and a switching frequency of 1 MHz has been designed and investigated under various loading scenarios. Gallium nitride (GaN) switching device-based designs achieved the highest levels of efficiency among the switching devices. The efficiency of this device is 97.40 percent in charging mode and 96.67 percent in discharging mode.
Style APA, Harvard, Vancouver, ISO itp.
4

Nepsha, Fedor, and Roman Belyaevsky. "Development of Interrelated Voltage Regulation System for Coal Mines Energy Efficiency Improving." E3S Web of Conferences 41 (2018): 03013. http://dx.doi.org/10.1051/e3sconf/20184103013.

Pełny tekst źródła
Streszczenie:
In this paper, the authors propose an algorithm for interrelated voltage regulation in the power supply system of coal mine which allows to provide a normative voltage level and to minimize the level of active power consumption. A feature of the proposed algorithm is a separate consideration of discrete and nondiscrete variables. Nondiscrete variables are represented as a state matrix. The optimization of nondiscrete variables is performed for each state. The algorithm chooses a state with the minimal active power consumption. The obtained values of discrete and nondiscrete variables are transferred in the form of control signals to voltage regulation devices. In this case, the periodicity of the switching is determined by the resource of the on-load tap-changing device. The use of this algorithm will theoretically allow increasing the energy efficiency of power supply systems of coal mines.
Style APA, Harvard, Vancouver, ISO itp.
5

Lu, Xiang, Volker Pickert, Maher Al-Greer, Cuili Chen, Xiang Wang, and Charalampos Tsimenidis. "Temperature Estimation of SiC Power Devices Using High Frequency Chirp Signals." Energies 14, no. 16 (2021): 4912. http://dx.doi.org/10.3390/en14164912.

Pełny tekst źródła
Streszczenie:
Silicon carbide devices have become increasingly popular in electric vehicles, predominantly due to their fast-switching speeds, which allow for the construction of smaller power converters. Temperature sensitive electrical parameters (TSEPs) can be used to determine the junction temperature, just like silicon-based power switches. This paper presents a new technique to estimate the junction temperature of a single-chip silicon carbide (SiC) metal–oxide–semiconductor field-effect transistor (MOSFET). During off-state operation, high-frequency chirp signals below the resonance frequency of the gate-source impedance are injected into the gate of a discrete SiC device. The gate-source voltage frequency response is captured and then processed using the fast Fourier transform. The data is then accumulated and displayed over the chirp frequency spectrum. Results show a linear relationship between the processed gate-source voltage and the junction temperature. The effectiveness of the proposed TSEPs is demonstrated in a laboratory scenario, where chirp signals are injected in a stand-alone biased discrete SiC module, and in an in-field scenario, where the TSEP concept is applied to a MOSFET operating in a DC/DC converter.
Style APA, Harvard, Vancouver, ISO itp.
6

Ren, Jie, and Jian She Tian. "Simulation on Multi-Objective Wind Power Integration Using Genetic Algorithm with Adaptive Weight." Advanced Materials Research 986-987 (July 2014): 529–32. http://dx.doi.org/10.4028/www.scientific.net/amr.986-987.529.

Pełny tekst źródła
Streszczenie:
Aiming at problems which were brought by large-scale wind power integration, and the problem of multi-objective reactive power optimization considering the coexistence of discrete variables and continuous variables, a method of simulation based on genetic algorithm with adaptive weight is brought out. A solving thinking presents that capacitor switching and transformer tap adjusting and other discrete equipments are first, and the action sequence of generator and dynamic reactive power compensation (DRPC) devices and other continuous equipments setting follows, which is presented that optimization problem is decomposed into continuous variable optimization and discrete variable optimization, then they are solved respectively and cross iteration until convergence. In view of the optimization complexity and the coexistence of discrete variables and continuous variables, genetic algorithm with adaptive weight is presented for finding global optimal solution. Case studies show that the proposed thinking and algorithm for solving multi-objective reactive power optimization are reasonable.
Style APA, Harvard, Vancouver, ISO itp.
7

Kim, Woo Seok, Minju Jeong, Sungcheol Hong, Byungkook Lim, and Sung Il Park. "Fully Implantable Low-Power High Frequency Range Optoelectronic Devices for Dual-Channel Modulation in the Brain." Sensors 20, no. 13 (2020): 3639. http://dx.doi.org/10.3390/s20133639.

Pełny tekst źródła
Streszczenie:
Wireless optoelectronic devices can deliver light to targeted regions in the brain and modulate discrete circuits in an animal that is awake. Here, we propose a miniaturized fully implantable low-power optoelectronic device that allows for advanced operational modes and the stimulation/inhibition of deep brain circuits in a freely-behaving animal. The combination of low power control logic circuits, including a reed switch and dual-coil wireless power transfer platform, provides powerful capabilities for the dissection of discrete brain circuits in wide spatial coverage for mouse activity. The actuating mechanism enabled by a reed switch results in a simplified, low-power wireless operation and systematic experimental studies that are required for a range of logical operating conditions. In this study, we suggest two different actuating mechanisms by (1) a magnet or (2) a radio-frequency signal that consumes only under 300 µA for switching or channel selection, which is a several ten-folds reduction in power consumption when compared with any other existing systems such as embedded microcontrollers, near field communication, and Bluetooth. With the efficient dual-coil transmission antenna, the proposed platform leads to more advantageous power budgets that offer improved volumetric and angular coverage in a cage while minimizing the secondary effects associated with a corresponding increase in transmitted power.
Style APA, Harvard, Vancouver, ISO itp.
8

Mishra, Sanhita, Sarat Chandra Swain, and Ritesh Dash. "Switching transient analysis for low voltage distribution cable." Open Engineering 12, no. 1 (2022): 29–37. http://dx.doi.org/10.1515/eng-2022-0004.

Pełny tekst źródła
Streszczenie:
Abstract Low voltage cable is primarily connected from the transmission system to several household applications. It is quite common that switching transient in the power system during the energization of the high voltage and low voltage cables have a very crippling effect on the cable as well as the power system components. Hence, an experiment has been performed in the laboratory with a low voltage cable-connected motor system. The experimental results have been validated in the simulation platform, and they are capable of predicting the transient behavior during power cable energization. The effect of transients on power cables during the energization of devices has been investigated in this study in the form of voltage, current, and frequency. Discrete wavelet transform is implemented for the decomposition of the transient current. The generated approximation signal is used to quantify the severity during switching transient condition.
Style APA, Harvard, Vancouver, ISO itp.
9

McPherson, B., B. Passmore, P. Killeen, D. Martin, A. Barkley, and T. McNutt. "Package design and development of a low cost high temperature (250°C), high current (50+A), low inductance discrete power package for advanced Silicon Carbide (SiC) and Gallium Nitride (GaN) devices." International Symposium on Microelectronics 2013, no. 1 (2013): 000592–97. http://dx.doi.org/10.4071/isom-2013-wa63.

Pełny tekst źródła
Streszczenie:
The demands for high-performance power electronics systems are rapidly surpassing the power density, efficiency, and reliability limitations defined by the intrinsic properties of silicon-based semiconductors. The advantages of post silicon materials, including Silicon Carbide (SiC) and Gallium Nitride (GaN), are numerous, including: high temperature operation, high voltage blocking capability, extremely fast switching, and superior energy efficiency. These advantages, however, are severely limited by conventional power packages, particularly at temperatures higher than 175°C and >100 kHz switching speeds. In this discussion, APEI, Inc. presents the design of a newly developed discrete package specifically intended for high performance, high current (>50A), rapid switching, and extended temperature (>250°C) wide band gap devices which are now readily available on the commercial market at voltages exceeding 1200V. Finite element analysis (FEA) results will be presented to illustrate the modeling process, design tradeoffs, and critical decisions fundamental to a high performance package design. A low profile design focuses on reducing parasitic impedances which hinder high speed switching. A notable increase in the switching speed and frequency reduces the size and volume of associated filtering components in a power converter. Operating at elevated temperatures reduces the requirements of the heat removal system, ultimately allowing for a substantial increase in the power density. Highlights of these packages include the flexibility to house a variety of device sizes and types, co-packaged antiparallel diodes, a terminal layout designed to allow rapid system configuration (for paralleling or creating half- and full-bridge topologies), and a novel wire bondless backside cooled construction for lateral GaN HEMT devices. Specific focus was placed on minimizing the cost of the materials and fabrication processes of the package components. The design of the package is discussed in detail. High temperature testing of a SiC assembly and electrical test results of a high frequency GaN based boost converter will be presented to demonstrate system level performance advantages.
Style APA, Harvard, Vancouver, ISO itp.
10

Roberts, J., A. Mizan, and L. Yushyna. "Optimized High Power GaN Transistors." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2015, HiTEN (2015): 000195–99. http://dx.doi.org/10.4071/hiten-session6-paper6_1.

Pełny tekst źródła
Streszczenie:
GaN transistors intended for use at 600–900 V and that are capable of providing of 30–100 A are being introduced this year. These devices have a substantially better switching Figure-of-Merit (FOM) than silicon power switches. Rapid market acceptance is expected leading to compound annual growth rates of 85 %. However these devices present new packaging challenges. Their high speed combined with the very high current being switched demands that very low inductance packaging must be combined with highly controlled drive circuitry. While convention, and the usually vertical power device die structure, has largely determined power transistor package formats in the past, the lateral nature of the today GaN devices requires the use of new package types. The new packages have to operate at high temperatures while providing effective heat removal, low inductance, and low series resistance. Because GaN devices are lateral they require the package metal tracks to be integrated within the on-chip tracks to carry the current away from the thin on-chip metal tracks. The new GaN devices are available in two formats: one for use in embedded modular assemblies and the other for use mounted upon conventional circuit board systems. The package intended for discrete printed circuit board (PCB) assemblies has a top side cooling option that simplifies the thermal interface to the heat sink. The paper describes the die layout including the added copper tracks. The corresponding package elements that interface directly with the surface of the die play a vital role in terms of the current handling. They also provide the interface to the external busbars that allow the package to be mounted within, or on PCB. The assembly has been subject to extensive thermal analysis and the performance of a 30 A, 650 V transistor is described.
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!