Gotowa bibliografia na temat „Discrete Particle Swarm Optimization”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Discrete Particle Swarm Optimization”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Discrete Particle Swarm Optimization"
Roy, Rahul, Satchidananda Dehuri i Sung Bae Cho. "A Novel Particle Swarm Optimization Algorithm for Multi-Objective Combinatorial Optimization Problem". International Journal of Applied Metaheuristic Computing 2, nr 4 (październik 2011): 41–57. http://dx.doi.org/10.4018/jamc.2011100104.
Pełny tekst źródłaXiao, Bin, i Zhao Hui Li. "An Improved Hybrid Discrete Particle Swarm Optimization Algorithm to Solve the TSP Problem". Applied Mechanics and Materials 130-134 (październik 2011): 3589–94. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.3589.
Pełny tekst źródłaTing, T. O., H. C. Ting i T. S. Lee. "Taguchi-Particle Swarm Optimization for Numerical Optimization". International Journal of Swarm Intelligence Research 1, nr 2 (kwiecień 2010): 18–33. http://dx.doi.org/10.4018/jsir.2010040102.
Pełny tekst źródłaWang, Bei Zhan, Xiang Deng, Wei Chuan Ye i Hai Fang Wei. "Study on Discrete Particle Swarm Optimization Algorithm". Applied Mechanics and Materials 220-223 (listopad 2012): 1787–94. http://dx.doi.org/10.4028/www.scientific.net/amm.220-223.1787.
Pełny tekst źródłaKang, Qi, Lei Wang i Qidi Wu. "Swarm-based approximate dynamic optimization process for discrete particle swarm optimization system". International Journal of Bio-Inspired Computation 1, nr 1/2 (2009): 61. http://dx.doi.org/10.1504/ijbic.2009.022774.
Pełny tekst źródłaBeheshti, Zahra, Siti Mariyam Shamsuddin i Shafaatunnur Hasan. "Memetic binary particle swarm optimization for discrete optimization problems". Information Sciences 299 (kwiecień 2015): 58–84. http://dx.doi.org/10.1016/j.ins.2014.12.016.
Pełny tekst źródłaSarathambekai, S., i K. Umamaheswari. "Intelligent discrete particle swarm optimization for multiprocessor task scheduling problem". Journal of Algorithms & Computational Technology 11, nr 1 (19.09.2016): 58–67. http://dx.doi.org/10.1177/1748301816665521.
Pełny tekst źródłaZhang, Jun Ting, i Li Xia Qiao. "Optimization Mechanism Control Strategy of Vehicle Routing Problem Based on Improved PSO". Advanced Materials Research 681 (kwiecień 2013): 130–36. http://dx.doi.org/10.4028/www.scientific.net/amr.681.130.
Pełny tekst źródłaWu, Yanmin, i Qipeng Song. "Improved Particle Swarm Optimization Algorithm in Power System Network Reconfiguration". Mathematical Problems in Engineering 2021 (11.03.2021): 1–10. http://dx.doi.org/10.1155/2021/5574501.
Pełny tekst źródłaR. B., Madhumala, Harshvardhan Tiwari i Devaraj Verma C. "Resource Optimization in Cloud Data Centers Using Particle Swarm Optimization". International Journal of Cloud Applications and Computing 12, nr 2 (1.04.2022): 1–12. http://dx.doi.org/10.4018/ijcac.305856.
Pełny tekst źródłaRozprawy doktorskie na temat "Discrete Particle Swarm Optimization"
Djaneye-Boundjou, Ouboti Seydou Eyanaa. "Particle Swarm Optimization Stability Analysis". University of Dayton / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1386413941.
Pełny tekst źródłaMuthuswamy, Shanthi. "Discrete particle swarm optimization algorithms for orienteering and team orienteering problems". Diss., Online access via UMI:, 2009.
Znajdź pełny tekst źródłaAminbakhsh, Saman. "Hybrid Particle Swarm Optimization Algorithm For Obtaining Pareto Front Of Discrete Time-cost Trade-off Problem". Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615398/index.pdf.
Pełny tekst źródłaDevarakonda, SaiPrasanth. "Particle Swarm Optimization". University of Dayton / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1335827032.
Pełny tekst źródłaAl-kazemi, Buthainah Sabeeh No'man. "Multiphase particle swarm optimization". Related electronic resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2002. http://wwwlib.umi.com/cr/syr/main.
Pełny tekst źródłaJUNQUEIRA, Caio Marco dos Santos. "Um algoritmo para alocação ótima de detectores de afundamentos de tensão". Universidade Federal de Campina Grande, 2017. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/479.
Pełny tekst źródłaMade available in DSpace on 2018-04-24T17:30:10Z (GMT). No. of bitstreams: 1 CAIO MARCO DOS SANTOS JUNQUEIRA – DISSERTAÇÃO (PPGEE) 2017.pdf: 6011061 bytes, checksum: 25c9c9fad6015613e54aae9e700918af (MD5) Previous issue date: 2017-03-09
Capes
Um algoritmo para alocação ótima de detectores de afundamentos de tensão (AT) é apresentado nesta dissertação. O algoritmo utiliza a Transformada Wavelet Discreta (TWD) paraa detecção de AT e o conceito de Matriz de Observabilidade Topológica (MOT) para avaliar o desempenho dos Sistemas de Distribuição de Energia Elétrica (SDEE) quando submetidos à tais distúrbios. Para resolver o problema de alocação ótima dos dispositivos detectores de AT, utilizou-se o método Binary Particle Swarm Optimi- tization (BPSO). Adicionalmente, apresenta-se uma metodologia de criação de uma base de dados para geração automática de AT. O algoritmo foi avaliado considerando-se dois sistemas: um sistema-testedo IEEE e um SDEE que simula um alimentador real da cidade de BoaVista-PB, os quais foram simulados no software Alternative Transient Pro- gram (ATP). Osresultados obtidos indicaram que o algoritmo é capaz de detectar AT em todo o sistema, fazendo o uso da instalação de detectores em poucas barras, oque indubitavelmente, reduzirá o custo do sistema de monitoramento.
An algorithm for optimal placement of voltage sags (VS) detectors is presented in this dissertation. The algorithm uses the Discrete Wavelet Transform (DWT) for VS detection and the Topological Observability Matrix (TOM) concept to evaluate the per- formance of the Electric Power Distribution Systems (EPDS) when subjected to such disturbances. In order to solve the problem of optimal placement of the VS detecting devices, the Binary Particle Swarm Optimization (BPSO) method was used. Additionally, a methodology for the creation of a database for automatic VS generation is presented. The algorithm was evaluated considering two systems: an IEEE test system and a EPDS that simulates a real feeder in Boa Vista-PB city, which were simulated in the Alternative Transient Program (ATP) software. The results indicate that the algorithm is capable of detecting VS throughout the system, using the installation of detectors in a few buses, which will undoubtedly reduce the cost of the monitoring system.
Bernardes, Wellington Maycon Santos. "Algoritmo enxame de partículas discreto para coordenação de relés direcionais de sobrecorrente em sistemas elétricos de potência". Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/18/18154/tde-14052013-094113/.
Pełny tekst źródłaThis work proposes a methodology that based on intelligent technique to obtain an optimized coordination of directional overcurrent relays in electric power systems. The problem is modeled as a mixed integer nonlinear problem, because the relays allows a discrete setting of time and/or current multipliers. The solution of the proposed optimization problem is obtained from the proposed metaheuristic named as Discrete Particle Swarm Optimization. In scientific and technical literature this problem is usually linearized and discrete variables are rounded off. In the proposed method, the discrete variables are modeled adequately in the metaheuristic and the results are compared to the classical optimization solvers implemented in General Algebraic Modeling System (GAMS). The method provides an important method for helping the engineers in to coordinate directional overcurrent relays in a very optimized way. It has high potential for the application to realistic systems, regardless of topology and operating condition.
Scheepers, Christiaan. "Multi-guided particle swarm optimization : a multi-objective particle swarm optimizer". Thesis, University of Pretoria, 2017. http://hdl.handle.net/2263/64041.
Pełny tekst źródłaThesis (PhD)--University of Pretoria, 2017.
Computer Science
PhD
Unrestricted
Karlberg, Hampus. "Task Scheduling Using Discrete Particle Swarm Optimisation". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-287311.
Pełny tekst źródłaOptimering av arbetsfördelning i nätverk kan öka användandet av tillgängliga resurser. I instabila heterogena nätverk kan schemaläggning användas för att optimera beräkningstid, energieffektivitet och systemstabilitet. Då nätverk består av sammankopplade resurser innebär det också att vad som är ett optimalt schema kan komma att ändras över tid. Bredden av nätverkskonfigurationer gör också att det kan vara svårt att överföra och applicera ett schema från en konfiguration till en annan. Diskret Particle Swarm Optimisation (DPSO) är en meta heuristisk metod som kan användas för att ta fram lösningar till schemaläggningsproblem. Den här uppsatsen kommer utforska hur DPSO kan användas för att optimera schemaläggning för instabila nätverk. Syftet är att hitta en lösning för nätverk under liknande begränsningar som de som återfinns på tåg. Detta för att i sin tur facilitera planerandet av optimala banor. Genom användandet av ett artificiellt neuralt nätverk (ANN) uppskattar vi schemaläggningskostnaden. Denna kostnad används sedan av DPSO heuristiken för att utforska en lösningsrymd med potentiella scheman. Våra resultat fokuserar på optimeringen av grupperingsstorleken av distribuerade problem i relation till robusthet och letens. Vi simulerar ett flertal instabila och heterogena nätverk och jämför deras prestanda. Utgångspunkten för jämförelsen är schemaläggning där uppgifter distribueras jämnt i bestämda gruperingsstorlekar. Prestandan analyseras sedan i relation till användbarheten i verkliga scenarion. Våra resultat visar på en signifikant ökning i prestanda inom ett brett spann av nätverkskonfigurationer. Det här är på bekostnad av långa söktider för DPSO algoritmen. Vår slutsats är att under rätt förutsättningar kan metoden användas för att snabba upp distribuerade beräkningar förutsatt att beräkningarna för schemaläggningen görs i förväg. Vi rekommenderar vidare utforskande av DPSO algoritmens parametrar för att snabba upp konvergens, samt undersökande av algoritmens prestanda i verkliga miljöer.
Czogalla, Jens. "Particle swarm optimization for scheduling problems". Aachen Shaker, 2010. http://d-nb.info/1002307813/04.
Pełny tekst źródłaKsiążki na temat "Discrete Particle Swarm Optimization"
Lazinica, Aleksandar. Particle swarm optimization. Rijek, Crotia: InTech, 2009.
Znajdź pełny tekst źródłaMercangöz, Burcu Adıgüzel, red. Applying Particle Swarm Optimization. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70281-6.
Pełny tekst źródłaCouceiro, Micael, i Pedram Ghamisi. Fractional Order Darwinian Particle Swarm Optimization. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19635-0.
Pełny tekst źródłaMikki, Said M., i Ahmed A. Kishk. Particle Swarm Optimization: A Physics-Based Approach. Cham: Springer International Publishing, 2008. http://dx.doi.org/10.1007/978-3-031-01704-9.
Pełny tekst źródłaOlsson, Andrea E. Particle swarm optimization: Theory, techniques, and applications. Hauppauge, N.Y: Nova Science Publishers, 2010.
Znajdź pełny tekst źródła1974-, Parsopoulos Konstantinos E., i Vrahatis Michael N. 1955-, red. Particle swarm optimization and intelligence: Advances and applications. Hershey, PA: Information Science Reference, 2010.
Znajdź pełny tekst źródłaParsopoulos, Konstantinos E. Particle swarm optimization and intelligence: Advances and applications. Hershey, PA: Information Science Reference, 2010.
Znajdź pełny tekst źródłaKiranyaz, Serkan, Turker Ince i Moncef Gabbouj. Multidimensional Particle Swarm Optimization for Machine Learning and Pattern Recognition. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-37846-1.
Pełny tekst źródłaChoi-Hong, Lai, i Wu Xiao-Jun, red. Particle swarm optimisation: Classical and quantum perspectives. Boca Raton: CRC Press, 2011.
Znajdź pełny tekst źródłaClerc, Maurice. Particle Swarm Optimization. Wiley & Sons, Incorporated, John, 2010.
Znajdź pełny tekst źródłaCzęści książek na temat "Discrete Particle Swarm Optimization"
Liu, QingFeng. "An Improved Discrete Particle Swarm Optimization Algorithm". W Lecture Notes in Electrical Engineering, 883–90. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4853-1_108.
Pełny tekst źródłaKarthi, R., S. Arumugam i K. Ramesh Kumar. "Discrete Particle Swarm Optimization Algorithm for Data Clustering". W Nature Inspired Cooperative Strategies for Optimization (NICSO 2008), 75–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03211-0_7.
Pełny tekst źródłaAkhand, M. A. H., Md Masudur Rahman i Nazmul Siddique. "Advances on Particle Swarm Optimization in Solving Discrete Optimization Problems". W Studies in Computational Intelligence, 59–88. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09835-2_4.
Pełny tekst źródłaTao, Qian, Hui-you Chang, Yang Yi, Chun-qin Gu i Wen-jie Li. "A Novel Cyclic Discrete Optimization Framework for Particle Swarm Optimization". W Lecture Notes in Computer Science, 166–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14922-1_22.
Pełny tekst źródłaClerc, Maurice. "Discrete Particle Swarm Optimization, illustrated by the Traveling Salesman Problem". W New Optimization Techniques in Engineering, 219–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-39930-8_8.
Pełny tekst źródłaGarg, Ritu, i Awadhesh Kumar Singh. "Multi-objective Workflow Grid Scheduling Based on Discrete Particle Swarm Optimization". W Swarm, Evolutionary, and Memetic Computing, 183–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-27172-4_23.
Pełny tekst źródłaZhan, Zhi-hui, i Jun Zhang. "Discrete Particle Swarm Optimization for Multiple Destination Routing Problems". W Lecture Notes in Computer Science, 117–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01129-0_15.
Pełny tekst źródłaYuan, Ying, Cuirong Wang, Cong Wang, Shiming Zhu i Siwei Zhao. "Discrete Particle Swarm Optimization Algorithm for Virtual Network Reconfiguration". W Lecture Notes in Computer Science, 250–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38703-6_30.
Pełny tekst źródłaBui, Ha-Duong, Sungmoon Jeong, Nak Young Chong i Matthew Mason. "Origami Folding Sequence Generation Using Discrete Particle Swarm Optimization". W Neural Information Processing, 484–93. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70093-9_51.
Pełny tekst źródłaZhang, Kai, Wanying Zhu, Jun Liu i Juanjuan He. "Discrete Particle Swarm Optimization Algorithm for Solving Graph Coloring Problem". W Communications in Computer and Information Science, 643–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-49014-3_57.
Pełny tekst źródłaStreszczenia konferencji na temat "Discrete Particle Swarm Optimization"
Sarif, Bambang A. B., i Mostafa Abd-El-Barr. "Functional synthesis using discrete particle swarm optimization". W 2008 IEEE Swarm Intelligence Symposium (SIS). IEEE, 2008. http://dx.doi.org/10.1109/sis.2008.4668306.
Pełny tekst źródłaEngelbrecht, A. P. "Asynchronous particle swarm optimization with discrete crossover". W 2014 IEEE Symposium On Swarm Intelligence (SIS). IEEE, 2014. http://dx.doi.org/10.1109/sis.2014.7011788.
Pełny tekst źródłaXu, Yufa, Guochu Chen i Jinshou Yu. "Three Sub-Swarm Discrete Particle Swarm Optimization Algorithm". W 2006 IEEE International Conference on Information Acquisition. IEEE, 2006. http://dx.doi.org/10.1109/icia.2006.305922.
Pełny tekst źródłaEngelbrecht, AP. "Particle swarm optimization with discrete crossover". W 2013 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2013. http://dx.doi.org/10.1109/cec.2013.6557864.
Pełny tekst źródłaWang, Xin, Xing Wang i Na Li. "Discrete local particle swarm optimization: A more rapid and precise hybrid particle swarm optimization". W 2013 9th International Conference on Natural Computation (ICNC). IEEE, 2013. http://dx.doi.org/10.1109/icnc.2013.6818030.
Pełny tekst źródłaLu, Qiang, Qing-He Xu i Xue-Na Qiu. "Discrete Particle Swarm Optimization with Chaotic Initialization". W 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2009). IEEE, 2009. http://dx.doi.org/10.1109/icbbe.2009.5162645.
Pełny tekst źródłaStrasser, Shane, Rollie Goodman, John Sheppard i Stephyn Butcher. "A New Discrete Particle Swarm Optimization Algorithm". W GECCO '16: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2908812.2908935.
Pełny tekst źródłaXu, Yiheng, Qiangwei Wang i Jinglu Hu. "An Improved Discrete Particle Swarm Optimization Based on Cooperative Swarms". W 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. IEEE, 2008. http://dx.doi.org/10.1109/wiiat.2008.103.
Pełny tekst źródłaRao, Singiresu S., i Kiran K. Annamdas. "Particle Swarm Methodologies for Engineering Design Optimization". W ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87237.
Pełny tekst źródłaZhong Liu i Lei Huang. "A mixed discrete particle swarm optimization for TSP". W 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE 2010). IEEE, 2010. http://dx.doi.org/10.1109/icacte.2010.5579238.
Pełny tekst źródłaRaporty organizacyjne na temat "Discrete Particle Swarm Optimization"
Vtipil, Sharon, i John G. Warner. Earth Observing Satellite Orbit Design Via Particle Swarm Optimization. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2014. http://dx.doi.org/10.21236/ada625084.
Pełny tekst źródłaSonugür, Güray, Celal Onur Gçkçe, Yavuz Bahadır Koca i Şevket Semih Inci. Particle Swarm Optimization Based Optimal PID Controller for Quadcopters. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, grudzień 2021. http://dx.doi.org/10.7546/crabs.2021.12.11.
Pełny tekst źródłaGökçe, Barış, Yavuz Bahadır Koca, Yılmaz Aslan i Celal Onur Gökçe. Particle Swarm Optimization-based Optimal PID Control of an Agricultural Mobile Robot. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, kwiecień 2021. http://dx.doi.org/10.7546/crabs.2021.04.12.
Pełny tekst źródłaDavis, Jeremy, Amy Bednar i Christopher Goodin. Optimizing maximally stable extremal regions (MSER) parameters using the particle swarm optimization algorithm. Engineer Research and Development Center (U.S.), wrzesień 2019. http://dx.doi.org/10.21079/11681/34160.
Pełny tekst źródłaStyling Parameter Optimization of the Type C Recreational Vehicle Air Drag. SAE International, wrzesień 2021. http://dx.doi.org/10.4271/2021-01-5094.
Pełny tekst źródła