Artykuły w czasopismach na temat „Discrete Kinetic Scheme”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Discrete Kinetic Scheme”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Chandrashekar, Praveen. "Kinetic Energy Preserving and Entropy Stable Finite Volume Schemes for Compressible Euler and Navier-Stokes Equations". Communications in Computational Physics 14, nr 5 (listopad 2013): 1252–86. http://dx.doi.org/10.4208/cicp.170712.010313a.
Pełny tekst źródłaZhu, Lianhua, Zhaoli Guo i Kun Xu. "Discrete unified gas kinetic scheme on unstructured meshes". Computers & Fluids 127 (marzec 2016): 211–25. http://dx.doi.org/10.1016/j.compfluid.2016.01.006.
Pełny tekst źródłaAregba–Driollet, D., J. Breil, S. Brull, B. Dubroca i E. Estibals. "Modelling and numerical approximation for the nonconservative bitemperature Euler model". ESAIM: Mathematical Modelling and Numerical Analysis 52, nr 4 (lipiec 2018): 1353–83. http://dx.doi.org/10.1051/m2an/2017007.
Pełny tekst źródłaZhong, Mingliang, Sen Zou, Dongxin Pan, Congshan Zhuo i Chengwen Zhong. "A simplified discrete unified gas–kinetic scheme for compressible flow". Physics of Fluids 33, nr 3 (1.03.2021): 036103. http://dx.doi.org/10.1063/5.0033911.
Pełny tekst źródłaShang, Jinlong, Zhenhua Chai, Xinmeng Chen i Baochang Shi. "Discrete unified gas kinetic scheme for incompressible Navier-Stokes equations". Computers & Mathematics with Applications 97 (wrzesień 2021): 45–60. http://dx.doi.org/10.1016/j.camwa.2021.05.019.
Pełny tekst źródłaZhong, Mingliang, Sen Zou, Dongxin Pan, Congshan Zhuo i Chengwen Zhong. "A simplified discrete unified gas kinetic scheme for incompressible flow". Physics of Fluids 32, nr 9 (1.09.2020): 093601. http://dx.doi.org/10.1063/5.0021332.
Pełny tekst źródłaZhou, Xiafeng, i Zhaoli Guo. "Discrete unified gas kinetic scheme for steady multiscale neutron transport". Journal of Computational Physics 423 (grudzień 2020): 109767. http://dx.doi.org/10.1016/j.jcp.2020.109767.
Pełny tekst źródłaWang, Peng, Shi Tao i Zhaoli Guo. "A coupled discrete unified gas-kinetic scheme for Boussinesq flows". Computers & Fluids 120 (październik 2015): 70–81. http://dx.doi.org/10.1016/j.compfluid.2015.07.012.
Pełny tekst źródłaGuo, Wenqiang, i Guoxiang Hou. "Novel Schemes of No-Slip Boundary Conditions for the Discrete Unified Gas Kinetic Scheme Based on the Moment Constraints". Entropy 25, nr 5 (10.05.2023): 780. http://dx.doi.org/10.3390/e25050780.
Pełny tekst źródłaMIEUSSENS, LUC. "DISCRETE VELOCITY MODEL AND IMPLICIT SCHEME FOR THE BGK EQUATION OF RAREFIED GAS DYNAMICS". Mathematical Models and Methods in Applied Sciences 10, nr 08 (listopad 2000): 1121–49. http://dx.doi.org/10.1142/s0218202500000562.
Pełny tekst źródłaSun, Dongke. "A discrete kinetic scheme to model anisotropic liquid–solid phase transitions". Applied Mathematics Letters 103 (maj 2020): 106222. http://dx.doi.org/10.1016/j.aml.2020.106222.
Pełny tekst źródłaZhang, Chunhua, Kang Yang i Zhaoli Guo. "A discrete unified gas-kinetic scheme for immiscible two-phase flows". International Journal of Heat and Mass Transfer 126 (listopad 2018): 1326–36. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.06.016.
Pełny tekst źródłaYang, Zeren, Sha Liu, Congshan Zhuo i Chengwen Zhong. "Free-Energy-Based Discrete Unified Gas Kinetic Scheme for van der Waals Fluid". Entropy 24, nr 9 (27.08.2022): 1202. http://dx.doi.org/10.3390/e24091202.
Pełny tekst źródłaGan, Yanbiao, Aiguo Xu, Guangcai Zhang i Huilin Lai. "Three-dimensional discrete Boltzmann models for compressible flows in and out of equilibrium". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232, nr 3 (29.11.2017): 477–90. http://dx.doi.org/10.1177/0954406217742181.
Pełny tekst źródłaGan, Yanbiao, Aiguo Xu, Guangcai Zhang, Junqi Wang, Xijun Yu i Yang Yang. "Lattice Boltzmann kinetic modeling and simulation of thermal liquid–vapor system". International Journal of Modern Physics C 25, nr 12 (grudzień 2014): 1441002. http://dx.doi.org/10.1142/s0129183114410022.
Pełny tekst źródłaLeibner, Tobias, i Mario Ohlberger. "A new entropy-variable-based discretization method for minimum entropy moment approximations of linear kinetic equations". ESAIM: Mathematical Modelling and Numerical Analysis 55, nr 6 (listopad 2021): 2567–608. http://dx.doi.org/10.1051/m2an/2021065.
Pełny tekst źródłaDU, RUI, i BAOCHANG SHI. "A NOVEL SCHEME FOR FORCE TERM IN THE LATTICE BGK MODEL". International Journal of Modern Physics C 17, nr 07 (lipiec 2006): 945–58. http://dx.doi.org/10.1142/s0129183106009461.
Pełny tekst źródłaAristov, V. V., O. V. Ilyin i O. A. Rogozin. "Kinetic multiscale scheme based on the discrete-velocity and lattice-Boltzmann methods". Journal of Computational Science 40 (luty 2020): 101064. http://dx.doi.org/10.1016/j.jocs.2019.101064.
Pełny tekst źródłaArun, K. R., i M. Lukáčová-Medviďová. "A Characteristics Based Genuinely Multidimensional Discrete Kinetic Scheme for the Euler Equations". Journal of Scientific Computing 55, nr 1 (28.06.2012): 40–64. http://dx.doi.org/10.1007/s10915-012-9623-6.
Pełny tekst źródłaHuo, Yutao, i Zhonghao Rao. "The discrete unified gas kinetic scheme for solid-liquid phase change problem". International Communications in Heat and Mass Transfer 91 (luty 2018): 187–95. http://dx.doi.org/10.1016/j.icheatmasstransfer.2017.12.018.
Pełny tekst źródłaSong, Xinliang, Yue Zhang, Xiafeng Zhou, Chuang Zhang i Zhaoli Guo. "Modified steady discrete unified gas kinetic scheme for multiscale radiative heat transfer". International Journal of Heat and Mass Transfer 203 (kwiecień 2023): 123799. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2022.123799.
Pełny tekst źródłaSubbareddy, Pramod K., i Graham V. Candler. "A fully discrete, kinetic energy consistent finite-volume scheme for compressible flows". Journal of Computational Physics 228, nr 5 (marzec 2009): 1347–64. http://dx.doi.org/10.1016/j.jcp.2008.10.026.
Pełny tekst źródłaZhu, Lianhua, i Zhaoli Guo. "Application of discrete unified gas kinetic scheme to thermally induced nonequilibrium flows". Computers & Fluids 193 (październik 2019): 103613. http://dx.doi.org/10.1016/j.compfluid.2017.09.019.
Pełny tekst źródłaMendoza, M., J. D. Debus, S. Succi i H. J. Herrmann. "Lattice kinetic scheme for generalized coordinates and curved spaces". International Journal of Modern Physics C 25, nr 12 (grudzień 2014): 1441001. http://dx.doi.org/10.1142/s0129183114410010.
Pełny tekst źródłaYang, Zeren, Sha Liu, Congshan Zhuo i Chengwen Zhong. "Conservative multilevel discrete unified gas kinetic scheme for modeling multiphase flows with large density ratios". Physics of Fluids 34, nr 4 (kwiecień 2022): 043316. http://dx.doi.org/10.1063/5.0086723.
Pełny tekst źródłaMallet, Jessy, Stéphane Brull i Bruno Dubroca. "An Entropic Scheme for an Angular Moment Model for the Classical Fokker-Planck-Landau Equation of Electrons". Communications in Computational Physics 15, nr 2 (luty 2014): 422–50. http://dx.doi.org/10.4208/cicp.050612.030513a.
Pełny tekst źródłaHerbin, Raphaèle, Jean-Claude Latché i Chady Zaza. "A cell-centred pressure-correction scheme for the compressible Euler equations". IMA Journal of Numerical Analysis 40, nr 3 (17.06.2019): 1792–837. http://dx.doi.org/10.1093/imanum/drz024.
Pełny tekst źródłaZhan, Ningyu, Rongqian Chen i Yancheng You. "Meshfree method based on discrete gas-kinetic scheme to simulate incompressible/compressible flows". Physics of Fluids 33, nr 1 (1.01.2021): 017112. http://dx.doi.org/10.1063/5.0033770.
Pełny tekst źródłaWen, Xin, Lian-Ping Wang, Zhaoli Guo i Jie Shen. "An improved discrete unified gas kinetic scheme for simulating compressible natural convection flows". Journal of Computational Physics: X 11 (czerwiec 2021): 100088. http://dx.doi.org/10.1016/j.jcpx.2021.100088.
Pełny tekst źródłaZhan, Ningyu, Rongqian Chen i Yancheng You. "Discrete gas-kinetic scheme-based arbitrary Lagrangian–Eulerian method for moving boundary problems". Physics of Fluids 33, nr 6 (czerwiec 2021): 067101. http://dx.doi.org/10.1063/5.0051299.
Pełny tekst źródłaWu, Chen, Baochang Shi, Zhenhua Chai i Peng Wang. "Discrete unified gas kinetic scheme with a force term for incompressible fluid flows". Computers & Mathematics with Applications 71, nr 12 (czerwiec 2016): 2608–29. http://dx.doi.org/10.1016/j.camwa.2016.04.025.
Pełny tekst źródłaZhao, Xiang, Chen Wu, Zhen Chen, Liming Yang i Chang Shu. "Reduced order modeling-based discrete unified gas kinetic scheme for rarefied gas flows". Physics of Fluids 32, nr 6 (1.06.2020): 067108. http://dx.doi.org/10.1063/5.0009614.
Pełny tekst źródłaZhang, Chuang, i Zhaoli Guo. "Discrete unified gas kinetic scheme for multiscale heat transfer with arbitrary temperature difference". International Journal of Heat and Mass Transfer 134 (maj 2019): 1127–36. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.02.056.
Pełny tekst źródłaDiaz, Manuel A., Min-Hung Chen i Jaw-Yen Yang. "High-Order Conservative Asymptotic-Preserving Schemes for Modeling Rarefied Gas Dynamical Flows with Boltzmann-BGK Equation". Communications in Computational Physics 18, nr 4 (październik 2015): 1012–49. http://dx.doi.org/10.4208/cicp.171214.210715s.
Pełny tekst źródłaHochbruck, Marlis, i Jan Leibold. "An implicit–explicit time discretization scheme for second-order semilinear wave equations with application to dynamic boundary conditions". Numerische Mathematik 147, nr 4 (3.03.2021): 869–99. http://dx.doi.org/10.1007/s00211-021-01184-w.
Pełny tekst źródłaZhu, Yajun, Chengwen Zhong i Kun Xu. "GKS and UGKS for High-Speed Flows". Aerospace 8, nr 5 (19.05.2021): 141. http://dx.doi.org/10.3390/aerospace8050141.
Pełny tekst źródłaHe, Qing, Shi Tao, Xiaoping Yang, Weijian Lu i Zongrun He. "Discrete unified gas kinetic scheme simulation of microflows with complex geometries in Cartesian grid". Physics of Fluids 33, nr 4 (kwiecień 2021): 042005. http://dx.doi.org/10.1063/5.0040850.
Pełny tekst źródłaLiu, Peiyao. "A Coupled Discrete Unified Gas-Kinetic Scheme for Convection Heat Transfer in Porous Media". Communications in Computational Physics 29, nr 1 (czerwiec 2021): 265–91. http://dx.doi.org/10.4208/cicp.oa-2019-0200.
Pełny tekst źródłaGuo, Wenqiang, i Guoxiang Hou. "Three-Dimensional Simulations of Anisotropic Slip Microflows Using the Discrete Unified Gas Kinetic Scheme". Entropy 24, nr 7 (30.06.2022): 907. http://dx.doi.org/10.3390/e24070907.
Pełny tekst źródłaTao, Shi, Haolong Zhang, Zhaoli Guo i Lian-Ping Wang. "A combined immersed boundary and discrete unified gas kinetic scheme for particle–fluid flows". Journal of Computational Physics 375 (grudzień 2018): 498–518. http://dx.doi.org/10.1016/j.jcp.2018.08.047.
Pełny tekst źródłaZhang, L. Q., Z. Chen, L. M. Yang i C. Shu. "Double distribution function-based discrete gas kinetic scheme for viscous incompressible and compressible flows". Journal of Computational Physics 412 (lipiec 2020): 109428. http://dx.doi.org/10.1016/j.jcp.2020.109428.
Pełny tekst źródłaLee, Wook, Eunbeom Jung, Seongwon Kang i Nahmkeon Hur. "On a momentum interpolation scheme for collocated meshes with improved discrete kinetic energy conservation". Journal of Mechanical Science and Technology 33, nr 6 (czerwiec 2019): 2761–68. http://dx.doi.org/10.1007/s12206-019-0522-8.
Pełny tekst źródłaTao, Shi, Baiman Chen, Xiaoping Yang i Simin Huang. "Second-order accurate immersed boundary-discrete unified gas kinetic scheme for fluid-particle flows". Computers & Fluids 165 (marzec 2018): 54–63. http://dx.doi.org/10.1016/j.compfluid.2018.01.005.
Pełny tekst źródłaMarcos, Aboubacar, i Ambroise Soglo. "Solutions of a Class of Degenerate Kinetic Equations Using Steepest Descent in Wasserstein Space". Journal of Mathematics 2020 (9.06.2020): 1–30. http://dx.doi.org/10.1155/2020/7489532.
Pełny tekst źródłaBhatt, Maulik, Amit K. Sanyal i Srikant Sukumar. "Asymptotically stable optimal multi-rate rigid body attitude estimation based on lagrange-d'alembert principle". Journal of Geometric Mechanics 15, nr 1 (2023): 73–97. http://dx.doi.org/10.3934/jgm.2023004.
Pełny tekst źródłaAllgeyer, Sebastien, Marie-Odile Bristeau, David Froger, Raouf Hamouda, V. Jauzein, Anne Mangeney, Jacques Sainte-Marie, Fabien Souillé i Martin Vallée. "Numerical approximation of the 3D hydrostatic Navier–Stokes system with free surface". ESAIM: Mathematical Modelling and Numerical Analysis 53, nr 6 (listopad 2019): 1981–2024. http://dx.doi.org/10.1051/m2an/2019044.
Pełny tekst źródłaYang, L. M., C. Shu, Y. Wang i Y. Sun. "Development of discrete gas kinetic scheme for simulation of 3D viscous incompressible and compressible flows". Journal of Computational Physics 319 (sierpień 2016): 129–44. http://dx.doi.org/10.1016/j.jcp.2016.05.018.
Pełny tekst źródłaChattopadhyay, Somesh, Daniel M. Keenan i Johannes D. Veldhuis. "Probabilistic recovery of neuroendocrine pulsatile, secretory and kinetic structure: An alternating discrete and continuous scheme". Quarterly of Applied Mathematics 66, nr 3 (18.03.2008): 401–21. http://dx.doi.org/10.1090/s0033-569x-08-01024-4.
Pełny tekst źródłaLi, Chao, i Lian-Ping Wang. "An immersed boundary-discrete unified gas kinetic scheme for simulating natural convection involving curved surfaces". International Journal of Heat and Mass Transfer 126 (listopad 2018): 1059–70. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.04.166.
Pełny tekst źródłaLiu, Hongtao, Yong Cao, Qing Chen, Mingchi Kong i Liang Zheng. "A conserved discrete unified gas kinetic scheme for microchannel gas flows in all flow regimes". Computers & Fluids 167 (maj 2018): 313–23. http://dx.doi.org/10.1016/j.compfluid.2018.03.023.
Pełny tekst źródła