Artykuły w czasopismach na temat „Direct-extrusion 3D-Printing”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Direct-extrusion 3D-Printing”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Romanczuk-Ruszuk, Eliza, Bogna Sztorch, Daria Pakuła, Ewa Gabriel, Krzysztof Nowak i Robert E. Przekop. "3D Printing Ceramics—Materials for Direct Extrusion Process". Ceramics 6, nr 1 (1.02.2023): 364–85. http://dx.doi.org/10.3390/ceramics6010022.
Pełny tekst źródłaLee, Su-Yeon, Chang-Soo Kim, Jean-Ho Park, Jong Beom Lee, Su-Hee Kim, Yun-Sung Han i Hee-Sung Lee. "Study on the Direct Melting Extrusion Metal 3D Printing Using Induction Heating". Journal of the Korean Society of Manufacturing Technology Engineers 29, nr 1 (15.02.2020): 66–73. http://dx.doi.org/10.7735/ksmte.2020.29.1.66.
Pełny tekst źródłaVatani, Morteza, i Jae-Won Choi. "Direct-print photopolymerization for 3D printing". Rapid Prototyping Journal 23, nr 2 (20.03.2017): 337–43. http://dx.doi.org/10.1108/rpj-11-2015-0172.
Pełny tekst źródłaAzad, Mohammad A., Deborah Olawuni, Georgia Kimbell, Abu Zayed Md Badruddoza, Md Shahadat Hossain i Tasnim Sultana. "Polymers for Extrusion-Based 3D Printing of Pharmaceuticals: A Holistic Materials–Process Perspective". Pharmaceutics 12, nr 2 (3.02.2020): 124. http://dx.doi.org/10.3390/pharmaceutics12020124.
Pełny tekst źródłaLuis, Eric, Houwen Matthew Pan, Swee Leong Sing, Ram Bajpai, Juha Song i Wai Yee Yeong. "3D Direct Printing of Silicone Meniscus Implant Using a Novel Heat-Cured Extrusion-Based Printer". Polymers 12, nr 5 (1.05.2020): 1031. http://dx.doi.org/10.3390/polym12051031.
Pełny tekst źródłaPetsiuk, Aliaksei, Bharath Lavu, Rachel Dick i Joshua M. Pearce. "Waste Plastic Direct Extrusion Hangprinter". Inventions 7, nr 3 (19.08.2022): 70. http://dx.doi.org/10.3390/inventions7030070.
Pełny tekst źródłaKuźmińska, Magdalena, Beatriz C. Pereira, Rober Habashy, Matthew Peak, Mohammad Isreb, Tim D. Gough, Abdullah Isreb i Mohamed A. Alhnan. "Solvent-free temperature-facilitated direct extrusion 3D printing for pharmaceuticals". International Journal of Pharmaceutics 598 (kwiecień 2021): 120305. http://dx.doi.org/10.1016/j.ijpharm.2021.120305.
Pełny tekst źródłaCersoli, Trenton, Alexis Cresanto, Callan Herberger, Eric MacDonald i Pedro Cortes. "3D Printed Shape Memory Polymers Produced via Direct Pellet Extrusion". Micromachines 12, nr 1 (15.01.2021): 87. http://dx.doi.org/10.3390/mi12010087.
Pełny tekst źródłaJain, Tanmay, William Clay, Yen-Ming Tseng, Apoorva Vishwakarma, Amal Narayanan, Deliris Ortiz, Qianhui Liu i Abraham Joy. "Role of pendant side-chain length in determining polymer 3D printability". Polymer Chemistry 10, nr 40 (2019): 5543–54. http://dx.doi.org/10.1039/c9py00879a.
Pełny tekst źródłaRevilla-Leon, Marta, Marina Olea-Vielba, Ana Esteso-Díaz, Iñaki Martinez-Klemm, Jose Manuel Reuss Rodriguez-Vilaboa i Mutlu Özcan. "New fabrication method using additive manufacturing technologies for the pattern of pressed lithium disilicate onlay restorations". Brazilian Dental Science 20, nr 4 (20.12.2017): 149. http://dx.doi.org/10.14295/bds.2017.v20i4.1364.
Pełny tekst źródłaVan Damme, Lana, Emilie Briant, Phillip Blondeel i Sandra Van Vlierberghe. "Indirect versus direct 3D printing of hydrogel scaffolds for adipose tissue regeneration". MRS Advances 5, nr 17 (2020): 855–64. http://dx.doi.org/10.1557/adv.2020.117.
Pełny tekst źródłaAlonso Madrid, Javier, Guillermo Sotorrío Ortega, Javier Gorostiza Carabaño, Nils O. E. Olsson i José Antonio Tenorio Ríos. "3D Claying: 3D Printing and Recycling Clay". Crystals 13, nr 3 (22.02.2023): 375. http://dx.doi.org/10.3390/cryst13030375.
Pełny tekst źródłaCrisostomo, Jan Lloyd Buenaventura, i John Ryan Cortez Dizon. "3D Printing Applications in Agriculture, Food Processing, and Environmental Protection and Monitoring". Advance Sustainable Science, Engineering and Technology 3, nr 2 (6.11.2021): 0210201. http://dx.doi.org/10.26877/asset.v3i2.9627.
Pełny tekst źródłaPrzekop, Robert E., Ewa Gabriel, Daria Pakuła i Bogna Sztorch. "Liquid for Fused Deposition Modeling Technique (L-FDM)—A Revolution in Application Chemicals to 3D Printing Technology: Color and Elements". Applied Sciences 13, nr 13 (21.06.2023): 7393. http://dx.doi.org/10.3390/app13137393.
Pełny tekst źródłaAhammed, Syed Riyaz, i Ayyappan Susila Praveen. "Optimization parameters effects on electrical conductivity of 3D printed circuits fabricated by direct ink writing method using functionalized multiwalled carbon nanotubes and polyvinyl alcohol conductive ink". International Journal for Simulation and Multidisciplinary Design Optimization 12 (2021): 7. http://dx.doi.org/10.1051/smdo/2021007.
Pełny tekst źródłaLi, Keda, Jinghong Ding, Yuxiong Guo, Hongchao Wu, Wenwen Wang, Jiaqi Ji, Qi Pei, Chenliang Gong, Zhongying Ji i Xiaolong Wang. "Direct Ink Writing of Phenylethynyl End-Capped Oligoimide/SiO2 to Additively Manufacture High-Performance Thermosetting Polyimide Composites". Polymers 14, nr 13 (30.06.2022): 2669. http://dx.doi.org/10.3390/polym14132669.
Pełny tekst źródłaReddy Dumpa, Nagi, Suresh Bandari i Michael A. Repka. "Novel Gastroretentive Floating Pulsatile Drug Delivery System Produced via Hot-Melt Extrusion and Fused Deposition Modeling 3D Printing". Pharmaceutics 12, nr 1 (8.01.2020): 52. http://dx.doi.org/10.3390/pharmaceutics12010052.
Pełny tekst źródłaPark, Jung Bin, Seok Hwan An, Jae Woong Jung i Jea Uk Lee. "Three-Dimensional Printing of Recycled Polypropylene and Activated Carbon Coatings for Harmful Gas Adsorption and Antibacterial Properties". Polymers 15, nr 5 (26.02.2023): 1173. http://dx.doi.org/10.3390/polym15051173.
Pełny tekst źródłaKam, Doron, Michael Chasnitsky, Chen Nowogrodski, Ido Braslavsky, Tiffany Abitbol, Shlomo Magdassi i Oded Shoseyov. "Direct Cryo Writing of Aerogels Via 3D Printing of Aligned Cellulose Nanocrystals Inspired by the Plant Cell Wall". Colloids and Interfaces 3, nr 2 (19.04.2019): 46. http://dx.doi.org/10.3390/colloids3020046.
Pełny tekst źródłaCho, Hui-Won, Seung-Hoon Baek, Beom-Jin Lee i Hyo-Eon Jin. "Orodispersible Polymer Films with the Poorly Water-Soluble Drug, Olanzapine: Hot-Melt Pneumatic Extrusion for Single-Process 3D Printing". Pharmaceutics 12, nr 8 (22.07.2020): 692. http://dx.doi.org/10.3390/pharmaceutics12080692.
Pełny tekst źródłaAmeeduzzafar, Nabil K. Alruwaili, Md Rizwanullah, Syed Nasir Abbas Bukhari, Mohd Amir, Muhammad Masood Ahmed i Mohammad Fazil. "3D Printing Technology in Design of Pharmaceutical Products". Current Pharmaceutical Design 24, nr 42 (20.03.2019): 5009–18. http://dx.doi.org/10.2174/1381612825666190116104620.
Pełny tekst źródłaJain, Tanmay, Yen-Ming Tseng, Chinnapatch Tantisuwanno, Joshua Menefee, Aida Shahrokhian, Irada Isayeva i Abraham Joy. "Synthesis, Rheology, and Assessment of 3D Printability of Multifunctional Polyesters for Extrusion-Based Direct-Write 3D Printing". ACS Applied Polymer Materials 3, nr 12 (19.11.2021): 6618–31. http://dx.doi.org/10.1021/acsapm.1c01275.
Pełny tekst źródłaKhondoker, Mohammad A. H., Adam Ostashek i Dan Sameoto. "Direct 3D Printing of Stretchable Circuits via Liquid Metal Co‐Extrusion Within Thermoplastic Filaments". Advanced Engineering Materials 21, nr 7 (10.04.2019): 1900060. http://dx.doi.org/10.1002/adem.201900060.
Pełny tekst źródłaRazzaq, Muhammad Yasar, Joamin Gonzalez-Gutierrez, Gregory Mertz, David Ruch, Daniel F. Schmidt i Stephan Westermann. "4D Printing of Multicomponent Shape-Memory Polymer Formulations". Applied Sciences 12, nr 15 (5.08.2022): 7880. http://dx.doi.org/10.3390/app12157880.
Pełny tekst źródłaKomorowski, Paweł, Mateusz Surma, Michał Walczakowski, Przemysław Zagrajek i Agnieszka Siemion. "Off-Axis Diffractive Optics for Compact Terahertz Detection Setup". Applied Sciences 10, nr 23 (30.11.2020): 8594. http://dx.doi.org/10.3390/app10238594.
Pełny tekst źródłaCiornei, Mirela, Răzvan Ionuț Iacobici, Ionel Dănuț Savu i Dalia Simion. "FDM 3D Printing Process - Risks and Environmental Aspects". Key Engineering Materials 890 (23.06.2021): 152–56. http://dx.doi.org/10.4028/www.scientific.net/kem.890.152.
Pełny tekst źródłaBoniatti, Janine, Patricija Januskaite, Laís B. da Fonseca, Alessandra L. Viçosa, Fábio C. Amendoeira, Catherine Tuleu, Abdul W. Basit, Alvaro Goyanes i Maria-Inês Ré. "Direct Powder Extrusion 3D Printing of Praziquantel to Overcome Neglected Disease Formulation Challenges in Paediatric Populations". Pharmaceutics 13, nr 8 (21.07.2021): 1114. http://dx.doi.org/10.3390/pharmaceutics13081114.
Pełny tekst źródłaSingamneni, Sarat, Malaya Prasad Behera, Derryn Truong, Marie Joo Le Guen, Elspeth Macrae i Kim Pickering. "Direct extrusion 3D printing for a softer PLA-based bio-polymer composite in pellet form". Journal of Materials Research and Technology 15 (listopad 2021): 936–49. http://dx.doi.org/10.1016/j.jmrt.2021.08.044.
Pełny tekst źródłaGoyanes, Alvaro, Nour Allahham, Sarah J. Trenfield, Edmont Stoyanov, Simon Gaisford i Abdul W. Basit. "Direct powder extrusion 3D printing: Fabrication of drug products using a novel single-step process". International Journal of Pharmaceutics 567 (sierpień 2019): 118471. http://dx.doi.org/10.1016/j.ijpharm.2019.118471.
Pełny tekst źródłaJain, Shubham, Mohammed Ahmad Yassin, Tiziana Fuoco, Hailong Liu, Samih Mohamed-Ahmed, Kamal Mustafa i Anna Finne-Wistrand. "Engineering 3D degradable, pliable scaffolds toward adipose tissue regeneration; optimized printability, simulations and surface modification". Journal of Tissue Engineering 11 (styczeń 2020): 204173142095431. http://dx.doi.org/10.1177/2041731420954316.
Pełny tekst źródłaElbl, Jan, Martin Veselý, Dagmar Blaháčková, Jaroslav Ondruš, Pavel Kulich, Eliška Mašková, Josef Mašek i Jan Gajdziok. "Development of 3D Printed Multi-Layered Orodispersible Films with Porous Structure Applicable as a Substrate for Inkjet Printing". Pharmaceutics 15, nr 2 (20.02.2023): 714. http://dx.doi.org/10.3390/pharmaceutics15020714.
Pełny tekst źródłaMenshutina, Natalia, Andrey Abramov, Maria Okisheva i Pavel Tsygankov. "Investigation of the 3D Printing Process Utilizing a Heterophase System". Gels 9, nr 7 (12.07.2023): 566. http://dx.doi.org/10.3390/gels9070566.
Pełny tekst źródłaWu, Ying, Chao An i Yaru Guo. "3D Printed Graphene and Graphene/Polymer Composites for Multifunctional Applications". Materials 16, nr 16 (18.08.2023): 5681. http://dx.doi.org/10.3390/ma16165681.
Pełny tekst źródłaMaurel, Alexis, Ana Cristina Martinez, Sylvie Grugeon, Stephane Panier, Loic Dupont, Michel Armand, Roberto Russo i in. "(Battery Division Postdoctoral Associate Research Award Sponsored by MTI Corporation and the Jiang Family Foundation) 3D Printing of Batteries: Fiction or Reality?" ECS Meeting Abstracts MA2022-02, nr 3 (9.10.2022): 214. http://dx.doi.org/10.1149/ma2022-023214mtgabs.
Pełny tekst źródłaRosenbaum, Christoph, Linus Großmann, Ellen Neumann, Petra Jungfleisch, Emre Türeli i Werner Weitschies. "Development of a Hot-Melt-Extrusion-Based Spinning Process to Produce Pharmaceutical Fibers and Yarns". Pharmaceutics 14, nr 6 (10.06.2022): 1229. http://dx.doi.org/10.3390/pharmaceutics14061229.
Pełny tekst źródłaMechtcherine, Viktor, Albert Michel, Marco Liebscher i Tobias Schmeier. "Extrusion-Based Additive Manufacturing with Carbon Reinforced Concrete: Concept and Feasibility Study". Materials 13, nr 11 (4.06.2020): 2568. http://dx.doi.org/10.3390/ma13112568.
Pełny tekst źródłaGalantucci, Luigi Maria, Alessandro Pellegrini, Maria Grazia Guerra i Fulvio Lavecchia. "3D Printing of parts using metal extrusion: an overview of shaping debinding and sintering technology". Advanced Technologies & Materials 47, nr 1 (15.06.2022): 25–32. http://dx.doi.org/10.24867/atm-2022-1-005.
Pełny tekst źródłaZhang, Jinyu, Shixiong Wu, Zedong Wang, Yuanfen Chen i Hui You. "Experimental Investigation of High-Viscosity Conductive Pastes and the Optimization of 3D Printing Parameters". Applied Sciences 13, nr 4 (13.02.2023): 2389. http://dx.doi.org/10.3390/app13042389.
Pełny tekst źródłaMaiz-Fernández, Sheila, Leyre Pérez-Álvarez, Unai Silván, José Luis Vilas-Vilela i Senentxu Lanceros-Méndez. "pH-Induced 3D Printable Chitosan Hydrogels for Soft Actuation". Polymers 14, nr 3 (8.02.2022): 650. http://dx.doi.org/10.3390/polym14030650.
Pełny tekst źródłaWang, Qianqian, Chencheng Ji, Lushan Sun, Jianzhong Sun i Jun Liu. "Cellulose Nanofibrils Filled Poly(Lactic Acid) Biocomposite Filament for FDM 3D Printing". Molecules 25, nr 10 (15.05.2020): 2319. http://dx.doi.org/10.3390/molecules25102319.
Pełny tekst źródłaLarraza, Izaskun, Julen Vadillo, Tamara Calvo-Correas, Alvaro Tejado, Loli Martin, Aitor Arbelaiz i Arantxa Eceiza. "Effect of Cellulose Nanofibers’ Structure and Incorporation Route in Waterborne Polyurethane–Urea Based Nanocomposite Inks". Polymers 14, nr 21 (25.10.2022): 4516. http://dx.doi.org/10.3390/polym14214516.
Pełny tekst źródłaLi, Zhong, Xiao Gang Hu, Hong Xing Lu i Qiang Zhu. "Microstructure Design of Semi-Solid Slurry for Metal Direct Writing". Solid State Phenomena 348 (28.08.2023): 33–38. http://dx.doi.org/10.4028/p-qdk1x5.
Pełny tekst źródłaSánchez-Guirales, Sergio A., Noelia Jurado, Aytug Kara, Aikaterini Lalatsa i Dolores R. Serrano. "Understanding Direct Powder Extrusion for Fabrication of 3D Printed Personalised Medicines: A Case Study for Nifedipine Minitablets". Pharmaceutics 13, nr 10 (29.09.2021): 1583. http://dx.doi.org/10.3390/pharmaceutics13101583.
Pełny tekst źródłaBednarzig, Vera, Stefan Schrüfer, Tom C. Schneider, Dirk W. Schubert, Rainer Detsch i Aldo R. Boccaccini. "Improved 3D Printing and Cell Biology Characterization of Inorganic-Filler Containing Alginate-Based Composites for Bone Regeneration: Particle Shape and Effective Surface Area Are the Dominant Factors for Printing Performance". International Journal of Molecular Sciences 23, nr 9 (26.04.2022): 4750. http://dx.doi.org/10.3390/ijms23094750.
Pełny tekst źródłaBednarzig, Vera, Stefan Schrüfer, Tom C. Schneider, Dirk W. Schubert, Rainer Detsch i Aldo R. Boccaccini. "Improved 3D Printing and Cell Biology Characterization of Inorganic-Filler Containing Alginate-Based Composites for Bone Regeneration: Particle Shape and Effective Surface Area Are the Dominant Factors for Printing Performance". International Journal of Molecular Sciences 23, nr 9 (26.04.2022): 4750. http://dx.doi.org/10.3390/ijms23094750.
Pełny tekst źródłaXiao, Bing, Xinmei Zheng, Yang Zhao, Bingxue Huang, Pan He, Biyou Peng i Gang Chen. "Controlling Shear Rate for Designable Thermal Conductivity in Direct Ink Printing of Polydimethylsiloxane/Boron Nitride Composites". Polymers 15, nr 16 (21.08.2023): 3489. http://dx.doi.org/10.3390/polym15163489.
Pełny tekst źródłaMea, Hing Jii, Luis Delgadillo i Jiandi Wan. "On-demand modulation of 3D-printed elastomers using programmable droplet inclusions". Proceedings of the National Academy of Sciences 117, nr 26 (15.06.2020): 14790–97. http://dx.doi.org/10.1073/pnas.1917289117.
Pełny tekst źródłaAndriotis, Eleftherios G., Georgios K. Eleftheriadis, Christina Karavasili i Dimitrios G. Fatouros. "Development of Bio-Active Patches Based on Pectin for the Treatment of Ulcers and Wounds Using 3D-Bioprinting Technology". Pharmaceutics 12, nr 1 (9.01.2020): 56. http://dx.doi.org/10.3390/pharmaceutics12010056.
Pełny tekst źródłaKostenko, Anastassia, Che J. Connon i Stephen Swioklo. "Storable Cell-Laden Alginate Based Bioinks for 3D Biofabrication". Bioengineering 10, nr 1 (23.12.2022): 23. http://dx.doi.org/10.3390/bioengineering10010023.
Pełny tekst źródłaVidakis, Nectarios, Panagiotis Mangelis, Markos Petousis, Nikolaos Mountakis, Vassilis Papadakis, Amalia Moutsopoulou i Dimitris Tsikritzis. "Mechanical Reinforcement of ABS with Optimized Nano Titanium Nitride Content for Material Extrusion 3D Printing". Nanomaterials 13, nr 4 (8.02.2023): 669. http://dx.doi.org/10.3390/nano13040669.
Pełny tekst źródła