Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Dimensional Nanostructure.

Książki na temat „Dimensional Nanostructure”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych książek naukowych na temat „Dimensional Nanostructure”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj książki z różnych dziedzin i twórz odpowiednie bibliografie.

1

Ajayi, Obafunso. Optical Studies of Excitonic Effects at Two-Dimensional Nanostructure Interfaces. [New York, N.Y.?]: [publisher not identified], 2017.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Yamada Conference (57th 2001 Tsukuba, Japan). Yamada Conference LVII: Atomic-scale surface designing for functional low-dimensional materials : AIST, Tsukuba, Japan, 14-16 November 2001. Amsterdam: Elsevier, 2002.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Nasar, Ali, red. Two-dimensional nanostructures. Boca Raton, FL: Taylor & Francis, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Zhai, Tianyou, i Jiannian Yao, red. One-Dimensional Nanostructures. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118310342.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Wang, Zhiming M., red. One-Dimensional Nanostructures. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-74132-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Li, Zhenyu, i Ce Wang. One-Dimensional nanostructures. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36427-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

M, Wang Zhiming, red. One-dimensional nanostructures. New York: Springer, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

M, Wang Zhiming, red. One-dimensional nanostructures. New York: Springer, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Torchynska, T. V. Low-dimensional semiconductor structures: Symposium held August 11-15 2013, Cancún, México. Warrendale, Pa: Materials Research Society, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Latu-romain, Laurence, i Maelig Ollivier. Silicon Carbide One-Dimensional Nanostructures. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119081470.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Zhai, Tianyou. One-dimensional nanostructures: Principles and applications. Hoboken, N.J: Wiley, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

C, Bensahel Daniel, Canham Leigh T i Ossicini Stephano, red. Optical properties of low dimensional silicon structures. Dordrecht: Kluwer Academic Publishers, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Ünlü, Hilmi, Norman J. M. Horing i Jaroslaw Dabrowski, red. Low-Dimensional and Nanostructured Materials and Devices. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25340-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Li, Zhenyu. One-Dimensional nanostructures: Electrospinning Technique and Unique Nanofibers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Three-dimensional nanoarchitectures: Designing next-generation devices. New York: Springer, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Graja, A., B. R. Bułka i F. Kajzar, red. Molecular Low Dimensional and Nanostructured Materials for Advanced Applications. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0349-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

NATO Advanced Research Workshop on Molecular Low Dimensional and Nanostructured Materials for Advanced Applications (2001 Poznań, Poland). Molecular low dimensional and nanostructured materials for advanced applications. Dordrecht: Kluwer Academic, 2002.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Zhuang, Tao-Tao. Design, Synthesis and Applications of One-Dimensional Chalcogenide Hetero-Nanostructures. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0188-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

NATO, Advanced Research Workshop on Dynamic Interactions in Quantum Dot Systems (2002 Puszczykowo Województwo wielkopolskie Poland). Low-dimensional systems: Theory, preparation, and some applications. Dordrecht: Kluwer Academic Publishers, 2003.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

NATO Advanced Research Workshop on Dynamic Interactions in Quantum Dot Systems (2002 Puszczykowo, Województwo wielkopolskie, Poland). Low-dimensional systems: Theory, preparation, and some applications. Dordrecht: Kluwer Academic Publishers, 2003.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Karl, Eberl, Petroff Pierre M, Demeester Piet, North Atlantic Treaty Organization. Scientific Affairs Division. i NATO Advanced Research Workshop on Low Dimensional Structures Prepared by Epitaxial Growth or Regrowth on Patterned Substrates (1995 : Rottach-Egern, Germany), red. Low dimensional structures prepared by epitaxial growth or regrowth on patterned substrates. Dordrecht: Kluwer Academic Publishers, 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Gonçalves, Paulo André Dias. Plasmonics and Light–Matter Interactions in Two-Dimensional Materials and in Metal Nanostructures. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38291-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Kong, X. Y., Y. C. Wang, X. F. Fan, G. F. Guo i L. M. Tong. Free-standing grid-like nanostructures assembled into 3D open architectures for photovoltaic devices. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.22.

Pełny tekst źródła
Streszczenie:
This article describes three-dimensional open architectures with free-standing grid-like nanostructure arrays as photocatalytic electrodes for a new type of dye-sensitized solar cell. It introduces a novel technique for fabricating a series of semiconducting oxides with grid-like nanostructures replicated from the biotemplates. These semiconducting oxides, including n-type titanium dioxide or p-type nickel oxide nanogrids, were sensitized with the dye molecules, then assembled into 3D stacked-grid arrays on a flexible substrate by means of the Langmuir–Blodgett method or the ink-jet printing technique for the photocatalytic electrodes. The article first considers the fabrication of photoelectrodes with 2D grid-like nanostructures by means of the biotemplating approach before discussing the assembly and photophysicsof grid-like nanostructures into 3D open architectures for the photocatalytic electrodes.
Style APA, Harvard, Vancouver, ISO itp.
24

Lin, Nian, i Sebastian Stepanow. Designing low-dimensional nanostructures at surfaces by supramolecular chemistry. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.10.

Pełny tekst źródła
Streszczenie:
This article describes the use of supramolecular chemistry to design low-dimensional nanostructures at surfaces. In particular, it discusses the design strategies of two types of low-dimensional supramolecular nanostructures: structures stabilized by hydrogen bonds and structures stabilized by metal-ligand co-ordination interactions. After providing an overview of hydrogen-bond systems such as 0D discrete clusters, 1D chains, and 2D open networks and close-packed arrays, the article considers metal-co-ordination systems. It also presents experimental results showing that both hydrogen bonds and metal co-ordination offer protocols to achieve unique nanostructured systems on 2D surfaces or interfaces. Noting that the conventional 3D supramolecular self-assembly has generated a vast number of nanostructures revealing high complexity and functionality, the article suggests that 2D approaches can be applied to substrates with different symmetries as well as physical and chemical properties.
Style APA, Harvard, Vancouver, ISO itp.
25

Bertel, E., i A. Menzel. Nanostructured surfaces: Dimensionally constrained electrons and correlation. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.11.

Pełny tekst źródła
Streszczenie:
This article examines dimensionally constrained electrons and electronic correlation in nanostructured surfaces. Correlation effects play an important role in spatial confinement of electrons by nanostructures. The effect of correlation will become increasingly dominant as the dimensionality of the electron wavefunction is reduced. This article focuses on quasi-one-dimensional (quasi-1D) confinement, i.e. more or less strongly coupled one-dimensional nanostructures, with occasional reference to 2D and 0D systems. It first explains how correlated systems exhibit a variety of electronically driven phase transitions, and especially the phases occurring in the generic phase diagram of correlated materials. It then describes electron–electron and electron–phonon interactions in low-dimensional systems and the phase diagram of real quasi-1D systems. Two case studies are considered: metal chains on silicon surfaces and quasi-1D structures on metallic surfaces. The article shows that spontaneous symmetry breaking occurs for many quasi-1D systems on both semiconductor and metal surfaces at low temperature.
Style APA, Harvard, Vancouver, ISO itp.
26

Ali, Nasar, i Mahmood Aliofkhazraei. Two-Dimensional Nanostructures. Taylor & Francis Group, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Aliofkhazraei, Mahmood. Two-Dimensional Nanostructures. Taylor & Francis Group, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

One-dimensional nanostructures. New York: Springer, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Ali, Nasar, i Mahmood Aliofkhazraei. Two-Dimensional Nanostructures. Taylor & Francis Group, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Zhai, Tianyou, i Jiannian Yao. One-Dimensional Nanostructures. Wiley & Sons, Incorporated, John, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Wang, Zhiming M. One-Dimensional Nanostructures. Springer, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Ali, Nasar, i Mahmood Aliofkhazraei. Two-Dimensional Nanostructures. Taylor & Francis Group, 2017.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Cheong, Kuan Yew. Two-Dimensional Nanostructures for Energy-Related Applications. Taylor & Francis Group, 2017.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Cheong, Kuan Yew. Two-Dimensional Nanostructures for Energy-related Applications. Taylor & Francis Group, 2021.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Cheong, Kuan Yew. Two-Dimensional Nanostructures for Energy-Related Applications. Taylor & Francis Group, 2017.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Cheong, Kuan Yew. Two-Dimensional Nanostructures for Energy-Related Applications. Taylor & Francis Group, 2017.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Lockman, Zainovia, red. 1-Dimensional Metal Oxide Nanostructures. CRC Press, 2018. http://dx.doi.org/10.1201/9781351266727.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Latu-Romain, Laurence, i Maelig Ollivier. Silicon Carbide One-Dimensional Nanostructures. Wiley & Sons, Incorporated, John, 2015.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Lockman, Zainovia. 1-Dimensional Metal Oxide Nanostructures. Taylor & Francis Group, 2020.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Latu-Romain, Laurence, i Maelig Ollivier. Silicon Carbide One-Dimensional Nanostructures. Wiley & Sons, Incorporated, John, 2015.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Latu-Romain, Laurence, i Maelig Ollivier. Silicon Carbide One-Dimensional Nanostructures. Wiley & Sons, Incorporated, John, 2015.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Latu-Romain, Laurence, i Maelig Ollivier. Silicon Carbide One-Dimensional Nanostructures. Wiley & Sons, Incorporated, John, 2015.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Li, Jing, i Xiao-Ying Huang. Nanostructured crystals: An unprecedented class of hybrid semiconductors exhibiting structure-induced quantum confinement effect and systematically tunable properties. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.16.

Pełny tekst źródła
Streszczenie:
This article describes the structure-induced quantum confinement effect in nanostructured crystals, a unique class of hybrid semiconductors that incorporate organic and inorganic components into a single-crystal lattice via covalent (coordinative) bonds to form extended one-, two- and three-dimensional network structures. These structures are comprised of subnanometer-sized II-VI semiconductor segments (inorganic component) and amine molecules (organic component) arranged into perfectly ordered arrays. The article first provides an overview of II-VI and III-V semiconductors, II-VI colloidal quantum dots, inorganic-organic hybrid materials before discussing the design and synthesis of I-VI-based inorganic-organic hybrid nanostructures. It also considers the crystal structures, quantum confinement effect, bandgaps, and optical properties, thermal properties, thermal expansion behavior of nanostructured crystals.
Style APA, Harvard, Vancouver, ISO itp.
44

Zhai, Tianyou, i Jiannian Yao. One-Dimensional Nanostructures: Principles and Applications. Wiley & Sons, Limited, John, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Two-Dimensional Nanostructures for Biomedical Technology. Elsevier, 2020. http://dx.doi.org/10.1016/c2018-0-00949-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Zhai, Tianyou, i Jiannian Yao. One-Dimensional Nanostructures: Principles and Applications. Wiley & Sons, Incorporated, John, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Zhai, Tianyou, i Jiannian Yao. One-Dimensional Nanostructures: Principles and Applications. Wiley & Sons, Incorporated, John, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Zhai, Tianyou, i Jiannian Yao. One-Dimensional Nanostructures: Principles and Applications. Wiley & Sons, Incorporated, John, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Narlikar, A. V., i Y. Y. Fu, red. Oxford Handbook of Nanoscience and Technology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.001.0001.

Pełny tekst źródła
Streszczenie:
This Handbook presents important developments in the field of nanoscience and technology, focusing on the advances made with a host of nanomaterials including DNA and protein-based nanostructures. Topics include: optical properties of carbon nanotubes and nanographene; defects and disorder in carbon nanotubes; roles of shape and space in electronic properties of carbon nanomaterials; size-dependent phase transitions and phase reversal at the nanoscale; scanning transmission electron microscopy of nanostructures; the use of microspectroscopy to discriminate nanomolecular cellular alterations in biomedical research; holographic laser processing for three-dimensional photonic lattices; and nanoanalysis of materials using near-field Raman spectroscopy. The volume also explores new phenomena in the nanospace of single-wall carbon nanotubes; ZnO wide-bandgap semiconductor nanostructures; selective self-assembly of semi-metal straight and branched nanorods on inert substrates; nanostructured crystals and nanocrystalline zeolites; unusual properties of nanoscale ferroelectrics; structural, electronic, magnetic, and transport properties of carbon-fullerene-based polymers; fabrication and characterization of magnetic nanowires; and properties and potential of protein-DNA conjugates for analytic applications.
Style APA, Harvard, Vancouver, ISO itp.
50

Two-Dimensional Nanostructures for Energy-Related Applications. Taylor & Francis Group, 2016.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii