Gotowa bibliografia na temat „Dimensional Nanostructure”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Dimensional Nanostructure”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Dimensional Nanostructure"

1

Gupta, Vinod Kumar, Njud S. Alharbie, Shilpi Agarwal i Vladimir A. Grachev. "New Emerging One Dimensional Nanostructure Materials for Gas Sensing Application: A Mini Review". Current Analytical Chemistry 15, nr 2 (19.02.2019): 131–35. http://dx.doi.org/10.2174/1573411014666180319151407.

Pełny tekst źródła
Streszczenie:
Background: Nanomaterials have numerous potential applications in many areas such as electronics, optoelectronics, catalysis and composite materials. Particularly, one dimensional (1D) nanomaterials such as nanobelts, nanorods, and nanotubes can be used as either functional materials or building blocks for hierarchical nanostructures. 1D nanostructure plays a very important role in sensor technology. Objective: In the current review, our efforts are directed toward recent review on the use of 1D nanostructure materials which are used in the literature for developing high-performance gas sensors with fast response, quick recovery time and low detection limit. This mini review also focuses on the methods of synthesis of 1D nanostructural sensor array, sensing mechanisms and its application in sensing of different types of toxic gases which are fatal for human mankind. Particular emphasis is given to the relation between the nanostructure and sensor properties in an attempt to address structure-property correlations. Finally, some future research perspectives and new challenges that the field of 1D nanostructure sensors will have to address are also discussed.
Style APA, Harvard, Vancouver, ISO itp.
2

Tahmasian, Arineh, Ali Morsali i Sang Woo Joo. "Sonochemical Syntheses of a One-Dimensional Mg(II) Metal-Organic Framework: A New Precursor for Preparation of MgO One-Dimensional Nanostructure". Journal of Nanomaterials 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/313456.

Pełny tekst źródła
Streszczenie:
Nanostructure of aMgIImetal-organic framework (MOF), {[Mg(HIDC)(H2O)2]·1.5H2O}n(1) (H3IDC = 4,5-imidazoledicarboxylic acid), was synthesized by a sonochemical method and characterized by scanning electron microscopy, X-ray powder diffraction, IR spectroscopy, and elemental analyses. The effect of concentration of starting reagents on size and morphology of nanostructured compound1has been studied. Calcination of the bulk powder and nanosized compound1at 650°C under air atmosphere yields MgO nanostructures. Results show that the size and morphology of the MgO nanoparticles are dependent upon the particles size of compound1.
Style APA, Harvard, Vancouver, ISO itp.
3

Yang, Ming, Xiaohua Chen, Zidong Wang, Yuzhi Zhu, Shiwei Pan, Kaixuan Chen, Yanlin Wang i Jiaqi Zheng. "Zero→Two-Dimensional Metal Nanostructures: An Overview on Methods of Preparation, Characterization, Properties, and Applications". Nanomaterials 11, nr 8 (23.07.2021): 1895. http://dx.doi.org/10.3390/nano11081895.

Pełny tekst źródła
Streszczenie:
Metal nanostructured materials, with many excellent and unique physical and mechanical properties compared to macroscopic bulk materials, have been widely used in the fields of electronics, bioimaging, sensing, photonics, biomimetic biology, information, and energy storage. It is worthy of noting that most of these applications require the use of nanostructured metals with specific controlled properties, which are significantly dependent on a series of physical parameters of its characteristic size, geometry, composition, and structure. Therefore, research on low-cost preparation of metal nanostructures and controlling of their characteristic sizes and geometric shapes are the keys to their development in different application fields. The preparation methods, physical and chemical properties, and application progress of metallic nanostructures are reviewed, and the methods for characterizing metal nanostructures are summarized. Finally, the future development of metallic nanostructure materials is explored.
Style APA, Harvard, Vancouver, ISO itp.
4

Wang, Wei, Shirui Guo, Isaac Ruiz, Mihrimah Ozkan i Cengiz S. Ozkan. "Synthesis of Three Dimensional Carbon Nanostructure Foams for Supercapacitors". MRS Proceedings 1451 (2012): 85–90. http://dx.doi.org/10.1557/opl.2012.1330.

Pełny tekst źródła
Streszczenie:
ABSTRACTIn this work, we demonstrated the growth of three dimensional graphene/carbon nanotubes hybrid carbon nanostructures on metal foam through a one-step chemical vapor deposition (CVD). The as-grown three dimensional carbon nanostructure foams can be potentially used as the electrodes of energy storage devices such as supercapacitors and batteries. During the CVD process, the carbon nanostructures are grown on highly porous nickel foam to form a high surface area 3-D carbon nanostructure by introducing a mixture precursor gases (H2, C2H2). The surface morphology was investigated by scanning electron microscopy (SEM) and the results demonstrated relatively homogeneous and densely packed 3-D carbon nanostructure. The quality was characterized by Raman spectroscopy. To further increase the capacitive capability the supercapacitors were fabricated based on the electrodes of carbon nanostructure foam and cyclic voltammetry, charge-discharge, and electrochemical impedance spectroscopy (EIS) were conducted to determine their performance.
Style APA, Harvard, Vancouver, ISO itp.
5

Cho, Seong J., Se Yeong Seok, Jin Young Kim, Geunbae Lim i Hoon Lim. "One-Step Fabrication of Hierarchically Structured Silicon Surfaces and Modification of Their Morphologies Using Sacrificial Layers". Journal of Nanomaterials 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/289256.

Pełny tekst źródła
Streszczenie:
Fabrication of one-dimensional nanostructures is a key issue for optical devices, fluidic devices, and solar cells because of their unique functionalities such as antireflection and superhydrophobicity. Here, we report a novel one-step process to fabricate patternable hierarchical structures consisting of microstructures and one-dimensional nanostructures using a sacrificial layer. The layer plays a role as not only a micromask for producing microstructures but also as a nanomask for nanostructures according to the etching time. Using this method, we fabricated patterned hierarchical structures, with the ability to control the shape and density of the nanostructure. The various architectures provided unique functionalities. For example, our sacrificial-layer etching method allowed nanostructures denser than what would be attainable with conventional processes to form. The dense nanostructure resulted in a very low reflectance of the silicon surface (less than 1%). The nanostructured surface and hierarchically structured surface also exhibited excellent antiwetting properties, with a high contact angle (>165°) and low sliding angle (<1°). We believe that our fabrication approach will provide new insight into functional surfaces, such as those used for antiwetting and antireflection surface applications.
Style APA, Harvard, Vancouver, ISO itp.
6

Verma, Sneha, i B. M. A. Rahman. "Computational Investigation of Advanced Refractive Index Sensor Using 3-Dimensional Metamaterial Based Nanoantenna Array". Sensors 23, nr 3 (23.01.2023): 1290. http://dx.doi.org/10.3390/s23031290.

Pełny tekst źródła
Streszczenie:
Photonic researchers are increasingly exploiting nanotechnology due to the development of numerous prevalent nanosized manufacturing technologies, which has enabled novel shape-optimized nanostructures to be manufactured and investigated. Hybrid nanostructures that integrate dielectric resonators with plasmonic nanostructures are also offering new opportunities. In this work, we have explored a hybrid coupled nano-structured antenna with stacked multilayer lithium tantalate (LiTaO3) and Aluminum oxide (Al2O3), operating at wavelength ranging from 400 nm to 2000 nm. Here, the sensitivity response has been explored of these nano-structured hybrid arrays. It shows a strong electromagnetic confinement in the separation gap (g) of the dimers due to strong surface plasmon resonance (SPR). The influences of the structural dimensions have been investigated to optimize the sensitivity. The designed hybrid coupled nanostructure with the combination of 10 layers of gold (Au) and Lithium tantalate (LiTaO3) or Aluminum oxide (Al2O3) (five layers each) having height, h1 = h2 = 10 nm exhibits 730 and 660 nm/RIU sensitivity, respectively. The sensitivity of the proposed hybrid nanostructure has been compared with a single metallic (only gold) elliptical paired nanostructure. Depending on these findings, we demonstrated that a roughly two-fold increase in the sensitivity (S) can be obtained by utilizing a hybrid coupled nanostructure compared to an identical nanostructure, which competes with traditional sensors of the same height, (h). Our innovative novel plasmonic hybrid nanostructures provide a framework for developing plasmonic nanostructures for use in various sensing applications.
Style APA, Harvard, Vancouver, ISO itp.
7

Datta, Anuja, Devajyoti Mukherjee, Corisa Kons, Sarath Witanachchi i Pritish Mukherjee. "Ferroelectricity in Strategically Synthesized Pb-free LiNbO3-type ZnSnO3 Nanostructure Arrayed Thick Films". MRS Proceedings 1729 (2015): 105–10. http://dx.doi.org/10.1557/opl.2015.171.

Pełny tekst źródła
Streszczenie:
ABSTRACTWe report the evidence of ferroelectricity from LN-type ZnSnO3 nanostructure arrayed thick films (10 - 20 µm) on Si with remanent polarization value as high as ≈ 30 µC/cm2 in nanowire arrays. A combined pulsed-laser deposition (PLD) technique and a solvothermal synthesis scheme was adopted to effectively synthesize the nanostructured samples assisted by conducting ZnO template-layers. The similar crystal symmetry and comparable lattice parameter between ZnO and LN-type ZnSnO3 facilitated the dense growth of high-quality ZnSnO3 nanostructure arrays in the form of one-dimensional vertical nanowires, nanorods and two-dimensional nanoflakes. The strategic synthesis method allowed controlled tunability of the morphology, crystallinity, and packing density of ZnSnO3 nanostructures, which in turn facilitated the measurement of ferroelectric (FE) properties using a simple sandwich-device geometry. Analyses of the FE properties in relation to the structures are presented and their potential for designing future Pb-free FE devices for non-volatile memory applications is discussed.
Style APA, Harvard, Vancouver, ISO itp.
8

Tatsuoka, Hirokazu, Wen Li, Er Chao Meng, Daisuke Ishikawa i Kaito Nakane. "Syntheses and Structural Control of Silicide, Oxide and Metallic Nano-Structured Materials". Solid State Phenomena 213 (marzec 2014): 35–41. http://dx.doi.org/10.4028/www.scientific.net/ssp.213.35.

Pełny tekst źródła
Streszczenie:
The structural control and morphological modification of a series of silicide, oxide and Ag metal nanostructures have been further discussed with reviews of nanostructure syntheses, such as CrSi2 nanowire bundles dendrites, MoSi2 nanosheets, α-Fe2O3 nanowires nanobelts, CuO/Cu2O nanowire axial heterostructures, ZrO2/SiOx and CrSi2/SiOx core/shell nanowires. In addition, the syntheses of Ag three-dimensional dendrites, two-dimensional dendrites, two-dimensional fractal structures, particles and nanowires also were discussed. Moreover, the structural and morphological properties of the nanostructures were examined. The structural control and morphological modifications of the nanostructures have been successfully demonstrated by the appropriate thermal treatments with specific starting materials. A large volume of silicide nanowire bundles, large area of oxide nanowire arrays and large area Ag nanostructure coatings were successfully fabricated.
Style APA, Harvard, Vancouver, ISO itp.
9

Yoon, Sang-Hyeok, i Kyo-Seon Kim. "Preparation of 1-D Nanostructured Tungsten Oxide Thin Film on Wire Mesh by Flame Vapor Deposition Process". Journal of Nanoscience and Nanotechnology 20, nr 7 (1.07.2020): 4517–20. http://dx.doi.org/10.1166/jnn.2020.17552.

Pełny tekst źródła
Streszczenie:
Flame vapor deposition (FVD) process can be used to prepare the tungsten oxide thin film which has photocatalytic activity at visible light. The FVD process is fast and economical to prepare thin film on substrate comparing to other processes. Various nanostructured thin films could be easily prepared by controlling several process parameters in FVD. One-dimensional (1-D) nanostructures with high surface area also can be prepared reproducibly. The tungsten wire precursor was oxidized and vaporized in flame to be deposited onto the substrate. The nanostructure shapes can be adjusted by controlling nucleation and growth rates of tungsten oxide vapor on substrate. In this study, nanostructured tungsten oxide thin film was fabricated on stainless steel mesh by FVD process changing the process variables of FVD. We found that proper selection of suitable process conditions in FVD was quite important for the 1-D nanostructure growth on stainless steel wire mesh with high surface area, which is quite important for photocatalytic application.
Style APA, Harvard, Vancouver, ISO itp.
10

Zhang, Shiying, Huizhao Zhuang, Chengshan Xue i Baoli Li. "Effect of Annealing on Morphology and Photoluminescence of β-Ga2O3 Nanostructures". Journal of Nanoscience and Nanotechnology 8, nr 7 (1.07.2008): 3454–57. http://dx.doi.org/10.1166/jnn.2008.138.

Pełny tekst źródła
Streszczenie:
A novel method was applied to prepare one-dimensional β-Ga2O3 nanostructure films. In this method, β-Ga2O3 nanostructures have been successfully synthesized on Si(111) substrates through annealing sputtered Ga2O3/Mo films for differernt time under flowing ammonia. The as-synthesized β-Ga2O3 nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) spectrum. The results show that the formed nanostructures are single-crystalline Ga2O3 with monoclinic structure. The annealing time of the samples has an evident influence on the morphology and optical property of the nanostructured β-Ga2O3 synthesized. The representative photoluminescence spectrum at room temperature exhibits a strong and broad emission band centered at 411.5 nm and a relatively weak emission peak located at 437.6 nm. The growth mechanism of the β-Ga2O3 nanostructured materials is also discussed briefly.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Dimensional Nanostructure"

1

Fedorenko, Viktoriia. "Atomic layer deposition on three dimensional silicon substrates for optical biosensors applications". Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT183/document.

Pełny tekst źródła
Streszczenie:
Ce manuscrit de thèse présente les recherches et les applications potentielles en tant que plate-forme (bio) capteur des couches minces conformes de ZnO et / ou Al2O3 / ZnO nanolaminates, déposées par dépôt de couche atomique (ALD) sur les différents substrats. Tout d'abord, une étude des propriétés optiques des films minces ZnO (20 et 50 nm) déposés par la technique ALD sur les grandes zones de nanofils de silicium ordonné (SiNW), réalisée en combinant la lithographie à la nanosphère et la gravure chimique à base de métal, a été réalisée. Ces méthodes ont permis la morphologie et le contrôle organisationnel des SiNW sur une grande surface. L'étude détaillée des propriétés structurales et optiques de l'hétérostructure SiNWs / ZnO à noyau-coquille a été réalisée en utilisant respectivement la spectroscopie XRD, SEM, de réflectance et de photoluminescence. L'intégration des tableaux SiNWs en tant que noyau et ZnO comme coque peut avoir un impact important sur le développement d'éléments de détection avec des propriétés améliorées. Dans les recherches ultérieures, des films ZnO formés par ALD en tant que plate-forme de biocapteur optique pour la détection des protéines de type A du virus Grapevine (antigènes GVA) ont été représentés. La détection de l'antigène GVA a été effectuée en utilisant les changements dans le comportement de la bande PL liée à la GVA. La sélectivité du biocapteur a été prouvée. La possibilité de détecter les antigènes GVA sans étiquettes supplémentaires a été démontrée. Ainsi, on a développé un biosensor à base de photoluminescence à base de photoluminescence libre pour les antigènes GVA. Une autre partie de notre étude est un contrôle spécifique de l'ancrage des protéines par le développement d'une surface multifonctionnelle avec une grande gamme de sphères de polystyrène (PSS), produite par la lithographie de nanosphère et bloquant davantage l'adsorption non spécifique des protéines à la surface du PSS par SAM de PEG. La microscopie d'épifluorescence a été utilisée pour confirmer qu'après l'immersion de l'échantillon sur la protéine cible (avidine et anti-avidine), ces dernières sont spécifiquement situées sur une sphère de polystyrène. Ces résultats sont significatifs pour l'exploration de dispositifs basés sur un nanoarray à grande échelle de sphères de PS et peuvent être utilisés pour la détection de protéines cibles ou simplement pour structurer une surface avec des protéines spécifiques. Notre recherche comprend également l'ajustement des propriétés structurelles et l'amélioration des propriétés électroniques et optiques des nanolaminés 1D PAN ZnO / Al2O3 conçus par dépôt de couche atomique (ALD) et électrospinning. Les propriétés structurelles et optiques de Al2O3 / ZnO déterminées à partir des analyses XPS, TEM, FTIR, XRD et PL. L'amélioration des propriétés électroniques et optiques permettrait l'application dans différents domaines de tels capteurs et biosensors
This thesis manuscript presents the investigations and potential applications as a (bio)sensor platform of the conform thin layers of ZnO and/or Al2O3/ZnO nanolaminates, deposited by atomic layer deposition (ALD) on the various substrates. First, a study of the optical properties of ZnO thin films (20 and 50 nm) deposited by ALD technique on the large areas of ordered silicon nanowires (SiNWs), produced by combining nanosphere lithography and metal-assisted chemical etching, was performed. These methods allowed the morphology and the organization control of SiNWs on a large area. The detailed study of structural and optical properties of core-shell SiNWs/ZnO heterostructure was done by utilizing XRD, SEM, reflectance and photoluminescence spectroscopy, respectively. Integration of SiNWs arrays as core and ZnO as shell can have a strong impact on the development of sensing elements with improved properties. In the further investigations, ZnO films formed by ALD as an optical biosensor platform for the detection of Grapevine virus A-type proteins (GVA-antigens) were represented. The GVA-antigen detection was performed using the changes in the GVA related PL band behavior. The biosensor selectivity has been proved. The possibility to detect GVA-antigens without additional labels has been demonstrated. Thus, label free and sensitive photoluminescence based biosensor for GVA-antigens has been developed. Another part of our study is a specific control of protein anchoring by the development of multifunctional surface with large-scale array of polystyrene spheres (PSS), which produced by nanosphere lithography and further blocking the unspecific adsorption of protein on the surface of the PSS by PEG SAMs. The epifluorescence microscopy was used to confirm that after immersion of sample on target protein (avidin and anti-avidin) solution, the latter are specifically located on polystyrene sphere. These results are meaningful for exploration of devices based on large-scale nanoarray of PS spheres and can be used for detection of target proteins or simply to pattern a surface with specific proteins. Our research also includes the tuning of structural properties and the enhancement of electronic and optical properties of 1D PAN ZnO/Al2O3 nanolaminates designed by atomic layer deposition (ALD) and electrospinning. The structural and optical properties of Al2O3/ ZnO determined from the XPS, TEM, FTIR, XRD and PL analysis. The enhancement of electronic and optical properties would allow application in different fields such sensors and biosensors
Style APA, Harvard, Vancouver, ISO itp.
2

Zhou, Zhengzhi. "Synthesis of one-dimensional nanostructure materials". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29703.

Pełny tekst źródła
Streszczenie:
Thesis (Ph.D)--Chemical Engineering, Georgia Institute of Technology, 2009.
Committee Chair: Deng,Yulin; Committee Member: Hsieh, Jeffery S.; Committee Member: Nair, Sankar; Committee Member: Singh, Preet; Committee Member: Yao, Donggang. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Style APA, Harvard, Vancouver, ISO itp.
3

Piccotti, Diego. "Two-Dimensional Nanostructure Arrays for Plasmonic Nanolasers". Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3423324.

Pełny tekst źródła
Streszczenie:
The interest for plasmonic nanolasers has been growing in the last ten years, since they are one of the most promising ways to reach the miniaturization of lasers. In fact, these devices could break the limit of physical confinement of light thanks to the virtual cavity given by plasmonic nanostructures which substitutes the current macroscopic optical cavities. These plasmonic devices can also support high speed operation mode, low lasing threshold and a narrow directional emission. For this reason, during this project, we focused on the design, the synthesis and the characterization of plasmonic nanolasers based on Au nanodome arrays and Ag nanodisk arrays. In order to synthesize highly ordered nanostructure arrays, we used Nanosphere Lithography (NSL), which is a cost effective and high throughput technique based on the self-assembling of polystyrene nanospheres. Thanks to the versatility of NSL, we have developed different nanofabrication protocols, combining NSL with Reactive Ion Etching (RIE) and Physical Vapor Deposition (PVD). Therefore, we investigated the optical properties of our synthesized arrays, recreating the optical band structure along the high symmetry directions of the reciprocal space. Suitable dye emitters (Pyridine 2 and Styryl 9M) were selected in order to couple their emission with the optical modes of the nanoarrays, on the basis of optical band structure information. In addition, in order to optimize the plasmonic properties and the local field enhancement of the metallic nanostructures, numerical simulations by COMSOL Multiphysics were performed. The interaction between dye and plasmonic structure generated an amplified emission. In particular, for Au nanodome arrays coupled with Pyridine 2 dissolved in ethanol, an amplification on the emission arises at 720 nm with a threshold behavior at 0.9 mJ/cm^2 and the FWHM of 14 nm. Furthermore, a highly directional emission was obtained at 17° with an angular divergence of 3° which takes place along the Rayleigh anomaly mode. By comparing the results of Au nanodome arrays and silica nanodome arrays, we concluded that lattice modes give a contribution to the emission directionality, while plasmonic modes provide a reduced lasing threshold overcoming the energy loss. Ag hexagonal nanodisk array showed a similar behavior to the Au nanodome arrays: we found a lasing threshold at 1.6 mJ/cm^2 , with also a similar FWHM. In this case, the emission is directed at 65° and presents an angular divergence of about 14° . Moreover, we investigated a nanolaser with a solid-state gain medium for the interest in applications and for the device integration on a chip. The Styryl 9M laser dye is embedded in a PMMA film and coupled with an Au nanodome array. This solid-state system presents an amplified emission at 795 nm with a threshold of 1.2 mJ/cm^2 and a FWHM of about 26 nm. The sample shows also a directional emission at 24° and with an angular divergence of 6° . Further investigations have shown the possibility to eliminate the substrate, creating a self-standing device, which exhibits an amplified emission with similar properties of that with the substrate. Finally, in order to discern the spontaneous or stimulated nature of the emission, we performed coherence measurements of the emitted beam. By a modified Michelson interferometer, a coherence length of about 29 um was determined for Au nanodome arrays above threshold. This result demonstrated that a coherent, low-threshold and highly directional emission can be obtained by coupling a suitable fluorescent dye to a properly designed virtual cavity realized by an ordered array of plasmonic nanostructures.
Nell'ultima decina di anni, l'interesse per i nanolaser plasmonici è cresciuto siccome sono uno tra i modi più promettenti per la miniaturizzazione dei laser. Infatti, questi dispositivi possono superare il limite di confinamento fisico della luce, grazie alla cavità virtuale data dalle nanostrutture plasmoniche che sostituiscono la convenzionale cavità ottica macroscopica. Inoltre, questi dispositivi plasmonici possono supportare modalità di funzionamento ad alta velocità, bassa soglia di emissione laser e una direzionalità ben definita. Per questa ragione, durante questo progetto, ci siamo concentrati sulla progettazione, la sintesi e la caratterizzazione di nanolasers plasmonici basati su array di nanocupole di oro e array di nanodischi di argento. Al fine di sintetizzare reticoli di nanoparticelle con un ordine elevato, abbiamo utilizzato la Nanosphere Lithography (NSL), una tecnica economica e ad alta produttività basata sull'autoassemblaggio di nanosfere di polistirene. Grazie alla versatilità della NSL, abbiamo sviluppato diversi protocolli di nanofabbricazione, combinando la NSL con i processi di Reactive Ion Etching (RIE) e deposizione fisica da vapore (PVD). Successivamente, abbiamo studiato le proprietà ottiche dei campioni sintetizzati, ricostruendo la struttura a bande ottica lungo le direzioni di alta simmetria dello spazio reciproco. Abbiamo selezionato due adeguati emettitori coloranti, la Pyridine 2 e lo Styryl 9M, al fine di accoppiare la loro emissione con le modalità ottiche dei reticoli nanostrutturati, sulla base delle informazioni della struttura a bande ottica. Inoltre, per ottimizzare le proprietà plasmoniche e l'amplificazione del campo locale delle nanostrutture metalliche, delle simulazioni numeriche sono state effettuate tramite il software COMSOL Multiphysics. L'interazione tra il colorante e la struttura plasmonica ha generato un'emissione amplificata. In particolare, nel reticolo di nanocupole di oro accoppiato alla piridina 2 disciolta in etanolo, un'amplificazione dell'emissione si presenta a720nm con un comportamento a soglia a 0.9 mJ/cm^2 . Inoltre, è stata ottenuta un'emissione direzionale a 17° con una divergenza angolare di 3° che avviene lungo l'anomalia di Rayleigh. Confrontando i risultati dei reticoli di nanocupole di oro con quelli dei reticoli di nanocupole di silice, abbiamo concluso che i modi di reticolo danno un contributo alla direzionalità dell'emissione, mentre i modi plasmonici forniscono una riduzione della soglia laser superando così la perdita di energia. Il reticolo esagonale di nanodischi di argento mostra un comportamento simile a quello con le nanocupole di oro: abbiamo trovato una soglia laser a 1.6 mJ/cm^2 , con anche una simile FWHM. In questo caso, questo fascio è diretto a 65° e presenta una divergenza angolare di circa 14° . Inoltre, abbiamo studiato anche un nanolaser con un mezzo di guadagno a stato solido per l'interesse nelle applicazioni e nell'integrazione di dispositivi su chip. Il colorante laser Styryl 9M è incorporato in un film di PMMA e accoppiato con un reticolo di nanocupole di oro. Questo sistema a stato solido presenta un'emissione amplificata a 795 nm con una soglia di 1.2 mJ/cm^2 e una FWHM di circa 26 nm. Questo campione manifesta anche un'emissione direzionale a 24° con una divergenza angolare di 6° . Ulteriori ricerche hanno dimostrato la possibilità di eliminare il substrato, creando un dispositivo autoportante, che presenta un'emissione amplificata con proprietà simili a quella con il substrato. Infine, per discernere la natura spontanea o stimolata dell'emissione, abbiamo misurato la coerenza del raggio emesso. Tramite un interferometro di Michelson dedicato, la lunghezza di coerenza è stimata a circa 29 um per i reticoli di nanocupole d'oro sopra la soglia. Questo risultato ha dimostrato che è possibile ottenere un'emissione coerente, a bassa soglia e altamente direzionale, accoppiando un colorante fluorescente adeguato con una cavità virtuale opportunamente progettata e realizzata da una reticolo ordinato di nanostrutture plasmoniche.
Style APA, Harvard, Vancouver, ISO itp.
4

Cha, S. N. "Nano scale devices based on one dimensional nanostructure". Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.597380.

Pełny tekst źródła
Streszczenie:
Fabrication and characterization of nanometre scale devices consisting of a suspended nanotube/nanowire and self-aligned electrodes is reported. An electromechnical switch and a field effect transistor have been realised using the nano device technology developed. The electromechanical switch has a triode structure and is designed so that a suspended carbon nanotube is mechanically switched to one of two self-aligned electrodes by repulsive electrostatic forces between the nanotube and the self-aligned electrode. The electrical measurements show well defined On and Off states with change of gate voltage. The measured threshold voltage for electromechanical switching is 3.6 V. A field effect transistor (FET) using a zinc oxide nanowire with significantly enhanced performance is demonstrated. The fabricated FET exhibits superior electrical performance with a transconductance of 3.06 μS, a mobility of 928 cm2/Vs and an On/Off ratio 106. The electrical characteristics are the best obtained to date for a ZnO nanowire transistor. The results are close to those reported previously for p-type Carbon Nanotube FETs. This raises the possibility of using ZnO as the n-type FET with a CNT as the p-type FET in nanometre scale complimentary logic circuits.
Style APA, Harvard, Vancouver, ISO itp.
5

Lee, Jae Woo. "Electrical characterization and modeling of low dimensional nanostructure FET". Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENT070/document.

Pełny tekst źródła
Streszczenie:
At the beginning of this thesis, basic and advanced device fabrication process which I haveexperienced during study such as top-down and bottom-up approach for the nanoscale devicefabrication technique have been described. Especially, lithography technology has beenfocused because it is base of the modern device fabrication. For the advanced device structure,etching technique has been investigated in detail.The characterization of FET has been introduced. For the practical consideration in theadvanced FET, several parameter extraction techniques have been introduced such as Yfunction,split C-V etc.FinFET is one of promising alternatives against conventional planar devices. Problem ofFinFET is surface roughness. During the fabrication, the etching process induces surfaceroughness on the sidewall surfaces. Surface roughness of channel decreases the effectivemobility by surface roughness scattering. With the low temperature measurement andmobility analysis, drain current through sidewall and top surface was separated. From theseparated currents, effective mobilities were extracted in each temperature conditions. Astemperature lowering, mobility behaviors from the transport on each surface have differenttemperature dependence. Especially, in n-type FinFET, the sidewall mobility has strongerdegradation in high gate electric field compare to top surface. Quantification of surfaceroughness was also compared between sidewall and top surface. Low temperaturemeasurement is nondestructive characterization method. Therefore this study can be a propersurface roughness measurement technique for the performance optimization of FinFET.As another quasi-1 D nanowire structure device, 3D stacked SiGe nanowire has beenintroduced. Important of strain engineering has been known for the effective mobility booster.The limitation of dopant diffusion by strain has been shown. Without strain, SiGe nanowireFET showed huge short channel effect. Subthreshold current was bigger than strained SiGechannel. Temperature dependent mobility behavior in short channel unstrained device wascompletely different from the other cases. Impurity scattering was dominant in short channelunstrained SiGe nanowire FET. Thus, it could be concluded that the strain engineering is notnecessary only for the mobility booster but also short channel effect immunity.Junctionless FET is very recently developed device compare to the others. Like as JFET,junctionless FET has volume conduction. Thus, it is less affected by interface states.Junctionless FET also has good short channel effect immunity because off-state ofjunctionless FET is dominated pinch-off of channel depletion. For this, junctionless FETshould have thin body thickness. Therefore, multi gate nanowire structure is proper to makejunctionless FET.Because of the surface area to volume ratio, quasi-1D nanowire structure is good for thesensor application. Nanowire structure has been investigated as a sensor. Using numericalsimulation, generation-recombination noise property was considered in nanowire sensor.Even though the surface area to volume ration is enhanced in the nanowire channel, devicehas sensing limitation by noise. The generation-recombination noise depended on the channelgeometry. As a design tool of nanowire sensor, noise simulation should be carried out toescape from the noise limitation in advance.The basic principles of device simulation have been discussed. Finite difference method andMonte Carlo simulation technique have been introduced for the comprehension of devicesimulation. Practical device simulation data have been shown for examples such as FinFET,strongly disordered 1D channel, OLED and E-paper
At the beginning of this thesis, basic and advanced device fabrication process which I haveexperienced during study such as top-down and bottom-up approach for the nanoscale devicefabrication technique have been described. Especially, lithography technology has beenfocused because it is base of the modern device fabrication. For the advanced device structure,etching technique has been investigated in detail.The characterization of FET has been introduced. For the practical consideration in theadvanced FET, several parameter extraction techniques have been introduced such as Yfunction,split C-V etc.FinFET is one of promising alternatives against conventional planar devices. Problem ofFinFET is surface roughness. During the fabrication, the etching process induces surfaceroughness on the sidewall surfaces. Surface roughness of channel decreases the effectivemobility by surface roughness scattering. With the low temperature measurement andmobility analysis, drain current through sidewall and top surface was separated. From theseparated currents, effective mobilities were extracted in each temperature conditions. Astemperature lowering, mobility behaviors from the transport on each surface have differenttemperature dependence. Especially, in n-type FinFET, the sidewall mobility has strongerdegradation in high gate electric field compare to top surface. Quantification of surfaceroughness was also compared between sidewall and top surface. Low temperaturemeasurement is nondestructive characterization method. Therefore this study can be a propersurface roughness measurement technique for the performance optimization of FinFET.As another quasi-1 D nanowire structure device, 3D stacked SiGe nanowire has beenintroduced. Important of strain engineering has been known for the effective mobility booster.The limitation of dopant diffusion by strain has been shown. Without strain, SiGe nanowireFET showed huge short channel effect. Subthreshold current was bigger than strained SiGechannel. Temperature dependent mobility behavior in short channel unstrained device wascompletely different from the other cases. Impurity scattering was dominant in short channelunstrained SiGe nanowire FET. Thus, it could be concluded that the strain engineering is notnecessary only for the mobility booster but also short channel effect immunity.Junctionless FET is very recently developed device compare to the others. Like as JFET,junctionless FET has volume conduction. Thus, it is less affected by interface states.Junctionless FET also has good short channel effect immunity because off-state ofjunctionless FET is dominated pinch-off of channel depletion. For this, junctionless FETshould have thin body thickness. Therefore, multi gate nanowire structure is proper to makejunctionless FET.Because of the surface area to volume ratio, quasi-1D nanowire structure is good for thesensor application. Nanowire structure has been investigated as a sensor. Using numericalsimulation, generation-recombination noise property was considered in nanowire sensor.Even though the surface area to volume ration is enhanced in the nanowire channel, devicehas sensing limitation by noise. The generation-recombination noise depended on the channelgeometry. As a design tool of nanowire sensor, noise simulation should be carried out toescape from the noise limitation in advance.The basic principles of device simulation have been discussed. Finite difference method andMonte Carlo simulation technique have been introduced for the comprehension of devicesimulation. Practical device simulation data have been shown for examples such as FinFET,strongly disordered 1D channel, OLED and E-paper
Style APA, Harvard, Vancouver, ISO itp.
6

Tran, Hoang Anh. "One-Dimensional Nanostructure and Sensing Applications: Tin Dioxide Nanowires and Carbon Nanotubes". PDXScholar, 2016. http://pdxscholar.library.pdx.edu/open_access_etds/2689.

Pełny tekst źródła
Streszczenie:
The key challenge for a nanomaterial based sensor is how to synthesize in bulk quantity and fabricate an actual device with insightful understanding of operational mechanisms during performance. I report here effective, controllable methods that exploit the concepts of the "green approach" to synthesize two different one-dimensional nanostructures, including tin oxide nanowires and carbon nanotubes. The syntheses are followed by product characterization and sensing device fabrications as well as sensor performance understanding at the molecular level. Sensor-analyte response and recovery kinetics are also presented. The first part of the thesis describes bulk-scale synthesis and characterization of tin oxide nanowires by the molten salt synthetic method and the nanowire doping with antimony (n-types) and lithium. The work builds on the success of using n-doped SnO2 nanoparticles to selectively detect chlorine gas at room temperature. Replacing n-doped nanoparticles with n-doped nanowires reduces the number of inter-particle electron hops between sensing electrodes. The nanowire based sensors show unprecedented 5 ppb detectability of corrosive Cl2 gas concentration in air. At the higher range, 10 ppm of Cl2 gas leads to a 250 fold increase in the device resistance. During sensor recovery, FT-IR studies show that dichlorine monoxide (Cl2O) and chlorine dioxide (ClO2) are the desorbing species. Long term stability of devices is affected by lattice oxygen vacancies replaced by chlorine atoms. Bulk-scale synthesis of multiwall carbon nanotube (MWCNTs) was achieved by a novel inexpensive synthetic method. The green chemistry method uses the non-toxic and easy to handle solid carbon source naphthalene. The synthesis is carried out by simply heating naphthalene and organometallic precursors as catalysts in a sealed glass tube. Synthesis at 610º C leads to MWCNTs of 50 nm diameter and lengths exceeding well over microns. MWCNT doping is attempted with nitrogen (n-type) and boron (p-type) precursors. Palladium nanoparticles decorated on as-synthesized MWCNTs are employed for specific detection of explosive hydrogen gas with concentrations far below the explosive concentration limits. During performance, the sensor exhibits abnormal response behaviors at hydrogen gas concentrations higher than 1%. A model of charge carrier inversion, brought about by reduction of MWCNT by hydrogen molecules dissociated by Pd nanoparticles is proposed.
Style APA, Harvard, Vancouver, ISO itp.
7

Harfenist, Steven A. "Structure and characterization of passivated inorganic nanocrystals and three dimensional nanocrystal arrays". Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/30776.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Patel, Mumukshu D. "Three-Dimensional Carbon Nanostructure and Molybdenum Disulfide (MoS2) for High Performance Electrochemical Energy Storage Devices". Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1062842/.

Pełny tekst źródła
Streszczenie:
My work presents a novel approach to fabricate binder free three-dimensional carbon nanotubes/sulfur (3DCNTs/S) hybrid composite by a facile and scalable method increasing the loading amount from 1.86 to 8.33 mg/cm2 highest reported to date with excellent electrochemical performance exhibiting maximum specific energy of ~1233Wh/kg and specific power of ~476W/kg, with respect to the mass of the cathode. Such an excellent performance is attributed to the fact that 3DCNTs offers higher loading amount of sulfur, and confine polysulfide within the structure. In second part of the thesis, molybdenum disulfide (MoS2) is typically studied for three electrochemical energy storage devices including supercapacitors, Li-ion batteries, and hybrid Li-ion capacitors. The intrinsic sheet like morphology of MoS2 provides high surface area for double layer charge storage and a layered structure for efficient intercalation of H+/ Li+ ions. My work demonstrates the electrochemical analysis of MoS2 grown on different substrates including copper (conducting), and carbon nanotubes. MoS2 film on copper was investigated as a supercapacitor electrode in three electrode system exhibiting excellent volumetric capacitance of ~330F/cm3 along with high volumetric power and energy density in the range of 40-80 W/cm3 and 1.6-2.4 mWh/cm3, respectively. Furthermore, we have developed novel binder-free 3DCNTs/ MoS2 as an anode materials in half cell Li-ion batteries. The vertically oriented morphology of MoS2 offers high surface area and active electrochemical sites for efficient intercalation of Li+ ions and demonstrating excellent electrochemical performance with high specific capacity and cycling stability. This 3DCNTs/ MoS2 anode was coupled with high surface area southern yellow pine derived activated carbon (SYAC) cathode to obtain hybrid 3DCNTs/ MoS2 || SYAC Li-ion capacitor (LIC), which delivers large operating voltage window of 1-4.0V with excellent cycling stability exhibiting capacitance retention of ~80% after 5000 cycles.
Style APA, Harvard, Vancouver, ISO itp.
9

ZHANG, JIE. "INVESTIGATIONS OF OXIDE AND SULFIDE BASED LOW DIMENSIONAL NANO STRUCTURES FOR CONDUCTOMETRIC GAS SENSORS, MEMRISTORS AND PHOTODETECTORS". OpenSIUC, 2015. https://opensiuc.lib.siu.edu/dissertations/1086.

Pełny tekst źródła
Streszczenie:
Low dimensional semiconductors are promising materials with diverse range of applications in a variety of fields. Specifically, in recent times low dimensional oxide and sulfide based semiconductors are regarded as materials that can have potential applications in chemical gas sensor, optoelectronic devices and memristor. How ever, in some cases it is envisioned that appropriate doping as well as phase stabilization is important in enhancing their material properties. This work presents the synthesis, characterization and application of various (pristine and doped) quasi-one dimensional metal oxides (TiO2, VO2) and two-dimensional materials (CuO thin film, MoS2). Some practical protocols for stabilization of specific phases at ambient conditions via a new method of doping in VO2 nanostructures with aluminum, is demonstrated. Similarly, a temperature-doping level phase diagram for the free-standing nanostructures in the temperature range close to the ambient conditions was presented. TiO2 nanowire was doped during growth and electrical measurements on individual TiO2 single crystal nanowires indicate that light in visible range can induce electron-hole pair formation. Furthermore, gas sensing (CO, H2) measurements taken under visible light irradiation imply that photo-activated chemical oxidization on the surface of TiO2 nanowires occurs, which is responsible for the observed measurements. Further, the effect of self heating in some nanostructures was also explored. Since self-heating is a prospective power-efficient energy delivery channel to the conductometric chemical sensors that require elevated temperatures for their operation, the unprecedentedly low power consumption can be achieved via minimizing the heat dissipation in the optimized device architecture. By investigating the heat dissipation in these devices we show that the thermal, electrical and chemical properties of the self-heated semiconducting nanowires appear to be strongly coupled with each other at nanoscale. This opens up unique opportunity to fabricate low power nanoscopic sensing leading to an ultra-small and power efficient single nanostructure gas recognition system. The CuO film based lateral devices were fabricated and studied for its resistive switching behavior. A good, stable and reproducible threshold RS performance of CuO film was obtained by electrical measurement. Finally, the micro-flake MoS2 based FET photoelectronic device was fabricated (using mechanically exfoliated MoS2) and its electronic and photoelectronic properties were investigated. We show that though the FET mobility values of MoS2 microflake is in the average range, but the photo-responsivity is much higher compared to most of others similar sulfide based 2D layered materials.
Style APA, Harvard, Vancouver, ISO itp.
10

McCune, Mallarie DeShea. "Fundamental study of the fabrication of zinc oxide nanowires and its dye-sensitized solar cell applications". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44725.

Pełny tekst źródła
Streszczenie:
Because of its excellent and unique physical properties, ZnO nanowires have been widely used in numerous scientific fields such as sensors, solar cells, nanogenerators, etc. Although it is believed that single crystal ZnO has a much higher electron transfer rate than TiO₂, it was found that ZnO nanowire-based dye-sensitized solar cells (DSSCs) have lower efficiencies than TiO₂ nanoparticle-based DSSCs because the density and surface area of ZnO nanowires are usually lower than that of TiO₂ nanoparticles, limiting the cell's light absorption, and because the open-root structure of ZnO nanowires results in electron back transfer that causes charge shortage of the cell. Here, experimental studies were performed that utilize strategic manipulations of the design of the ZnO nanowire based DSSCs in efforts to address and solve its key challenges. It was shown that by incorporating various blocking layers into the design of the cell, the performance of the DSSC can be improved. Specifically, by placing a hybrid blocking layer of TiO₂-P4VP polymer between the substrate and the ZnO nanowires, the conversion efficiency of the cell was 43 times higher than that of a cell without this blocking layer due to the reduction of electron back transfer. Furthermore, in efforts to improve the surface area of the ZnO nanowire array, unique three dimensional structures of ZnO nanowires were fabricated. It was found that by significantly improving the overall density and surface area of the ZnO nanowire array through distinctive hierarchal nanowire structures, the light harvesting efficiency and electron transport were enhanced allowing the DSSC to reach 5.20%, the highest reported value for 3D ZnO NW based DSSCs. Additionally, the development of a theoretical model was explored in efforts to investigate how the geometry of ZnO nanowires affects the incident photon-to-current conversion efficiency of 1D ZnO nanowire-based N719-sensitized solar cells at the maximum absorption wavelength of 543 nm.
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Dimensional Nanostructure"

1

Ajayi, Obafunso. Optical Studies of Excitonic Effects at Two-Dimensional Nanostructure Interfaces. [New York, N.Y.?]: [publisher not identified], 2017.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Yamada Conference (57th 2001 Tsukuba, Japan). Yamada Conference LVII: Atomic-scale surface designing for functional low-dimensional materials : AIST, Tsukuba, Japan, 14-16 November 2001. Amsterdam: Elsevier, 2002.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Nasar, Ali, red. Two-dimensional nanostructures. Boca Raton, FL: Taylor & Francis, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Zhai, Tianyou, i Jiannian Yao, red. One-Dimensional Nanostructures. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118310342.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Wang, Zhiming M., red. One-Dimensional Nanostructures. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-74132-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Li, Zhenyu, i Ce Wang. One-Dimensional nanostructures. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36427-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

M, Wang Zhiming, red. One-dimensional nanostructures. New York: Springer, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

M, Wang Zhiming, red. One-dimensional nanostructures. New York: Springer, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Torchynska, T. V. Low-dimensional semiconductor structures: Symposium held August 11-15 2013, Cancún, México. Warrendale, Pa: Materials Research Society, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Latu-romain, Laurence, i Maelig Ollivier. Silicon Carbide One-Dimensional Nanostructures. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119081470.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Dimensional Nanostructure"

1

Kern, D. P. "Nanostructure Fabrication". W Low-Dimensional Electronic Systems, 120–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84857-5_11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Zhang, Zhang, i Stephan Senz. "One-Dimensional Semiconductor Nanostructure Growth with Templates". W One-Dimensional Nanostructures, 1–18. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118310342.ch1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Karličić, Danilo, Tony Murmu, Sondipon Adhikari i Michael McCarthy. "One-Dimensional Double-Nanostructure-Systems". W Non-Local Structural Mechanics, 87–136. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781118572030.ch5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Dattoli, Eric N., i Wei Lu. "Hierarchical 3D Nanostructure Organization for Next-Generation Devices". W Three-Dimensional Nanoarchitectures, 205–48. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9822-4_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Xie, Wei-Guang, Jian-Bin Xu i Jin An. "Properties and Devices of Single One-Dimensional Nanostructure: Application of Scanning Probe Microscopy". W One-Dimensional Nanostructures, 339–58. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118310342.ch15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Latu-Romain, Laurence, i Maelig Ollivier. "SiC-Based One-Dimensional Nanostructure Technologies". W Silicon Carbide One-Dimensional Nanostructures, 87–101. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119081470.ch4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Berginc, Gérard. "Small-Amplitude Perturbation Theory for Two-Dimensional Surfaces". W Nanostructure Science and Technology, 127–79. Boston, MA: Springer US, 2007. http://dx.doi.org/10.1007/978-0-387-35659-4_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Zhang, Jun, i Xianghong Liu. "One-Dimensional Nanowire-Based Heterostructures for Gas Sensors". W Nanostructure Science and Technology, 201–35. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2367-6_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Aich, Nirupam, Arvid Masud, Tara Sabo-Attwood, Jaime Plazas-Tuttle i Navid B. Saleh. "Dimensional Variations in Nanohybrids: Property Alterations, Applications, and Considerations for Toxicological Implications". W Nanostructure Science and Technology, 271–91. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59662-4_9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Chang, Han-Wei, Chi Liang Chen, Sofia Ya Hsuan Liou i Chung-Li Dong. "X-Ray Spectroscopic Analysis of Electronic Properties of One-Dimensional Nanostructured Materials". W Nanostructure Science and Technology, 1–29. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2367-6_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Dimensional Nanostructure"

1

Yan, Jingshi, Tobias Bucher, Haitao Chen, Khosro Zangeneh Kamali, Emad Najafidehaghani, Antony George, Mohsen Rahmani i in. "Valley-based directional emission controlled by plasmonic nanostructure​". W Low-Dimensional Materials and Devices 2020, redaktorzy Nobuhiko P. Kobayashi, A. Alec Talin, Albert V. Davydov i M. Saif Islam. SPIE, 2020. http://dx.doi.org/10.1117/12.2568272.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Gwak, Yunki, Vinay Narayanunni, Sang-Won Jee, Anastassios A. Mavrokefalos, Michael T. Pettes, Jung-Ho Lee, Li Shi i Choongho Yu. "Thermal Conductivity of One-Dimensional Silicon-Germanium Alloy Nanowires". W ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88563.

Pełny tekst źródła
Streszczenie:
Thermal properties of one dimensional nanostructures are of interest for thermoelectric energy conversion. Thermoelectric efficiency is related to non dimensional thermoelectric figure of merit, ZT = (S^2 σT)/k where S, σ, k are the Seebeck coefficient, electrical conductivity and thermal conductivity respectively. These physical properties are interdependent, and hence making ZT of a material high is very challenging work. However, when the size of nanostructure is comparable to the wavelength and mean free path of energy carriers, it is feasible to avoid such interdependence to enhance ZT energy conversion. [1–3]
Style APA, Harvard, Vancouver, ISO itp.
3

Guo, Xiaodong, Lei Liu i Xingyue Zhangyang. "Study on electronic and optical properties of GaN nanostructure arrays". W Low-Dimensional Materials and Devices 2020, redaktorzy Nobuhiko P. Kobayashi, A. Alec Talin, Albert V. Davydov i M. Saif Islam. SPIE, 2020. http://dx.doi.org/10.1117/12.2572354.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Ishikawa, Shinji, i Yoshio Hayasaki. "Size measurement of nanostructure using digital super-resolution interference microscopy". W Digital Holography and Three-Dimensional Imaging. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/dh.2014.dth4b.1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Chang, Chia Ming, Hung-Kuei Tsai, Ming Lun Tseng, Bo Han Chen, Cheng Hung Chu, Hsin Wei Huang, Ding-Wei Huang, Chien-Jang Wu i Din Ping Tsai. "Three-dimensional light manipulation by plasmonic nanostructure". W SPIE NanoScience + Engineering, redaktor Mark I. Stockman. SPIE, 2012. http://dx.doi.org/10.1117/12.930330.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Resnick, Alex, Jungkyu Park, Biya Haile i Eduardo B. Farfán. "Three-Dimensional Printing of Carbon Nanostructures". W ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11411.

Pełny tekst źródła
Streszczenie:
Abstract Multi-layered carbon nanostructures are the next leap for many advanced consumer and industrial applications that require both high strength and uniquely high electrical and thermal properties. Applications of three-dimensional (3D) carbon nanostructures have already been theorized to include wearable technology, processor chip heat transfer material, and flexible electronics. 3D carbon nanostructures appear in the form of carbon nanotubes (CNTs) and layered graphene tiers, however, many structures previously examined have been limited to one or two graphene layers or non-repeatable structured patterns. Many of the electrical and thermal properties of CNTs are still being investigated, but the initial studies demonstrate promising results such as the thermal conductivity ranging in the thousands W/m-K. Developing new ways to fabricate these structures at a reasonable cost has become a primary focus for graphene-based research. In this study, 3D carbon nanostructure samples are 3D printed using laser lithography, then a series of high temperature furnace burns and Nickel Chemical Vapor Deposition (CVD) is utilized to leave a previously multi-species structure as a solely carbon-species structure with mostly carbon sp-2 bonds. CVD has proven to be a leading method for forming graphene due to the ability to control graphene nucleation across larger surfaces and structures. Nanoscale 3D printing of carbon structures also allows for a great degree of freedom towards the creation of repeatable patterns or structures that are currently trying to be achieved in other studies. This study employs the use of controlled cleanroom environments with cutting edge technology and machines to fabricate the 3D carbon nanostructures.
Style APA, Harvard, Vancouver, ISO itp.
7

Huang, Jiebin, Peng Han, Chaoxiong Chen i Guanling Yang. "Multiple channeled filtering in one-dimensional photonic quantum-well and super-lattice structures". W Nanophotonics, Nanostructure, and Nanometrology II. SPIE, 2007. http://dx.doi.org/10.1117/12.757120.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Vora, Kevin, SeungYeon Kang, Shobha Shukla i Eric Mazur. "Three-dimensional silver nanostructure fabrication through multiphoton photoreduction". W SPIE LASE, redaktorzy Alexander Heisterkamp, Michel Meunier i Stefan Nolte. SPIE, 2012. http://dx.doi.org/10.1117/12.906839.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Harris, Tom, Julio Martinez, Eric Shaner, Brian S. Swartzentruber, Jianyu Huang, John Sullivan i Gang Chen. "A Platform for Thermal Property Measurements and Transmission Electron Microscopy of Nanostructures". W ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44508.

Pełny tekst źródła
Streszczenie:
Measurements of the electrical and thermal transport properties of one-dimensional nanostructures (e.g., nanotubes and nanowires) typically are obtained without detailed knowledge of the specimens atomic-scale structure or defects. To address this deficiency, we have developed a microfabricated, chip-based characterization platform that enables both transmission electron microscopy (TEM) of atomic structure and defects as well as measurement of the thermal transport properties of individual nanostructures. The platform features a suspended heater line that contacts a suspended nanostructure/nanowire at its midpoint, which is placed on the platform using in-situ scanning electron microscope nanomanipulators. Because the nanostructure is suspended across a through-hole, we have used TEM to characterize the atomic and defect structure (dislocations, stacking faults, etc.) of the test sample. As a model study, we report the use of this platform to measure the thermal conductivity and defect structure of GaN nanowires. The utilization of this platform for the measurements of other nanostructures will also be discussed.
Style APA, Harvard, Vancouver, ISO itp.
10

Okamoto, Hiromi, Shun Hashiyada, Yoshio Nishiyama i Tetsuya Narushima. "Imaging Chiral Plasmons". W JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.5a_a410_1.

Pełny tekst źródła
Streszczenie:
Chirality is a broad concept that characterizes structures of systems in almost all hierarchy of materials in natural sciences. Molecular chirality is sometimes essential in biological functions. Also in nanomaterials sciences, chirality plays a key role. It is of fundamental importance to investigate internal structures (geometrical distributions) of chiral optical responses in nanomaterials, to design chiral features of the materials and their functions. We developed near-field optical activity (typically circular dichroism, CD) imaging systems that allow us to visualize local structures of optical activity in nanomaterials, and observed near-field CD images of two-dimensional gold nanostructures fabricated with electron beam lithography lift-off technique. We found that the amplitudes of local CD signals were as large as 100 times the macroscopic CD signals of the same samples, for two-dimensional chiral gold nanostructures [1]. Even highly symmetric achiral structures that never give CD signals macroscopically gave locally very strong CD signals (a typical example for a rectangular nanostructure is shown in Figure 1) [2,3]. In this case, average of the signal over the nanostructure yielded roughly null CD intensity. While achiral nanostructures show in general local CD activities as mentioned above, circularly symmetric (two-dimensionally isotropic) nanostructures, such as circular disks, never give CD signals at any local positions. However, when the circular disk is illuminated with linearly polarized light, the circular symmetry is broken, and thus the system potentially yields locally chiral optical (i.e., circularly polarized) fields. To demonstrate that, we extended the near-field CD microscope, and enabled irradiation of well- defined linearly polarized near-field on the sample and detection of scattered-field ellipticity and polarization azimuth angle. We found for circular gold disks that the scattered field was actually elliptically polarized. The ellipticity and the azimuth angle of the scattered field depended on the incident polarization angle and relative position on the disk.
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Dimensional Nanostructure"

1

Han, Hyungkyu. The synthesis of one dimensional nanostructure for energy storage application. Office of Scientific and Technical Information (OSTI), czerwiec 2019. http://dx.doi.org/10.2172/1526934.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Tran, Hoang. One-Dimensional Nanostructure and Sensing Applications: Tin Dioxide Nanowires and Carbon Nanotubes. Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.2685.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Lyo, Sungkwun Kenneth, Wei Pan, John Louis Reno, Joel Robert Wendt i Daniel Lee Barton. LDRD final report on Bloch Oscillations in two-dimensional nanostructure arrays for high frequency applications. Office of Scientific and Technical Information (OSTI), wrzesień 2008. http://dx.doi.org/10.2172/948689.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

O'Connell, R. F. Quantum Transport, Noise and Non-Linear Dissipative Effects in One- and Two-Dimensional Systems and Associated Sub-Micron and Nanostructure Devices. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1992. http://dx.doi.org/10.21236/ada250895.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Zhu, Yong, Jacob Eapen i Ayman Hawari. One-Dimensional Nanostructures for Neutron Detection. Office of Scientific and Technical Information (OSTI), maj 2015. http://dx.doi.org/10.2172/1179807.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Eckhardt, C. J. Two Dimensional Crystals and Nanostructured Materials. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1998. http://dx.doi.org/10.21236/ada358135.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Bertness, K. A. Dimensional measurement of nanostructures with scanning electron microscopy. Gaithersburg, MD: National Institute of Standards and Technology, wrzesień 2017. http://dx.doi.org/10.6028/nist.sp.250-96.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Gao, Pu-Xian. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control. Office of Scientific and Technical Information (OSTI), lipiec 2013. http://dx.doi.org/10.2172/1111426.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Hsieh, Timothy H., i Brian M. Wong. Optoelectronic and excitonic properties of oligoacenes and one-dimensional nanostructures. Office of Scientific and Technical Information (OSTI), wrzesień 2010. http://dx.doi.org/10.2172/1002094.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Wei, Peng, Chun-Ning Lau i Marc Bockrath. Spontaneous and Field-Induced Symmetry Breaking in Low Dimensional Nanostructures. Office of Scientific and Technical Information (OSTI), grudzień 2019. http://dx.doi.org/10.2172/1577865.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii