Gotowa bibliografia na temat „Dimension de Gelfand-Kirillov”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Dimension de Gelfand-Kirillov”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Dimension de Gelfand-Kirillov"

1

Zhang, Yang, i Xiangui Zhao. "Gelfand–Kirillov dimension of differential difference algebras". LMS Journal of Computation and Mathematics 17, nr 1 (2014): 485–95. http://dx.doi.org/10.1112/s1461157014000102.

Pełny tekst źródła
Streszczenie:
AbstractDifferential difference algebras, introduced by Mansfield and Szanto, arose naturally from differential difference equations. In this paper, we investigate the Gelfand–Kirillov dimension of differential difference algebras. We give a lower bound of the Gelfand–Kirillov dimension of a differential difference algebra and a sufficient condition under which the lower bound is reached; we also find an upper bound of this Gelfand–Kirillov dimension under some specific conditions and construct an example to show that this upper bound cannot be sharpened any further.
Style APA, Harvard, Vancouver, ISO itp.
2

BERGEN, JEFFREY, i PIOTR GRZESZCZUK. "GK DIMENSION AND LOCALLY NILPOTENT SKEW DERIVATIONS". Glasgow Mathematical Journal 57, nr 3 (18.12.2014): 555–67. http://dx.doi.org/10.1017/s0017089514000482.

Pełny tekst źródła
Streszczenie:
AbstractLet A be a domain over an algebraically closed field with Gelfand–Kirillov dimension in the interval [2,3). We prove that if A has two locally nilpotent skew derivations satisfying some natural conditions, then A must be one of five algebras. All five algebras are Noetherian, finitely generated, and have Gelfand–Kirillov dimension equal to 2. We also obtain some results comparing the Gelfand–Kirillov dimension of an algebra to its subring of invariants under a locally nilpotent skew derivation.
Style APA, Harvard, Vancouver, ISO itp.
3

Lezama, Oswaldo, i Helbert Venegas. "Gelfand–Kirillov dimension for rings". São Paulo Journal of Mathematical Sciences 14, nr 1 (24.04.2020): 207–22. http://dx.doi.org/10.1007/s40863-020-00166-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

CENTRONE, LUCIO. "A NOTE ON GRADED GELFAND–KIRILLOV DIMENSION OF GRADED ALGEBRAS". Journal of Algebra and Its Applications 10, nr 05 (październik 2011): 865–89. http://dx.doi.org/10.1142/s0219498811004987.

Pełny tekst źródła
Streszczenie:
In this paper, we consider associative P.I. algebras over a field F of characteristic 0, graded by a finite group G. More precisely, we define the G-graded Gelfand–Kirillov dimension of a G-graded P.I. algebra. We find a basis of the relatively free graded algebras of the upper triangular matrices UTn(F) and UTn(E), with entries in F and in the infinite-dimensional Grassmann algebra, respectively. As a consequence, we compute their graded Gelfand–Kirillov dimension with respect to the natural gradings defined over these algebras. We obtain similar results for the upper triangular matrix algebra UTa, b(E) = UTa+b(E)∩Ma, b(E) with respect to its natural ℤa+b × ℤ2-grading. Finally, we compute the ℤn-graded Gelfand–Kirillov dimension of Mn(F) in some particular cases and with different methods.
Style APA, Harvard, Vancouver, ISO itp.
5

Bell, Jason P., T. H. Lenagan i Kulumani M. Rangaswamy. "Leavitt path algebras satisfying a polynomial identity". Journal of Algebra and Its Applications 15, nr 05 (30.03.2016): 1650084. http://dx.doi.org/10.1142/s0219498816500845.

Pełny tekst źródła
Streszczenie:
Leavitt path algebras [Formula: see text] of an arbitrary graph [Formula: see text] over a field [Formula: see text] satisfying a polynomial identity are completely characterized both in graph-theoretic and algebraic terms. When [Formula: see text] is a finite graph, [Formula: see text] satisfying a polynomial identity is shown to be equivalent to the Gelfand–Kirillov dimension of [Formula: see text] being at most one, though this is no longer true for infinite graphs. It is shown that, for an arbitrary graph [Formula: see text], the Leavitt path algebra [Formula: see text] has Gelfand–Kirillov dimension zero if and only if [Formula: see text] has no cycles. Likewise, [Formula: see text] has Gelfand–Kirillov dimension one if and only if [Formula: see text] contains at least one cycle, but no cycle in [Formula: see text] has an exit.
Style APA, Harvard, Vancouver, ISO itp.
6

Zhao, Xiangui, i Yang Zhang. "Gelfand-Kirillov Dimensions of Modules over Differential Difference Algebras". Algebra Colloquium 23, nr 04 (26.09.2016): 701–20. http://dx.doi.org/10.1142/s1005386716000596.

Pełny tekst źródła
Streszczenie:
Differential difference algebras are generalizations of polynomial algebras, quantum planes, and Ore extensions of automorphism type and of derivation type. In this paper, we investigate the Gelfand-Kirillov dimension of a finitely generated module over a differential difference algebra through a computational method: Gröbner-Shirshov basis method. We develop the Gröbner-Shirshov basis theory of differential difference algebras, and of finitely generated modules over differential difference algebras, respectively. Then, via Gröbner-Shirshov bases, we give algorithms for computing the Gelfand-Kirillov dimensions of cyclic modules and finitely generated modules over differential difference algebras.
Style APA, Harvard, Vancouver, ISO itp.
7

Moreno-Fernández, José M., i Mercedes Siles Molina. "Graph algebras and the Gelfand–Kirillov dimension". Journal of Algebra and Its Applications 17, nr 05 (26.04.2018): 1850095. http://dx.doi.org/10.1142/s0219498818500950.

Pełny tekst źródła
Streszczenie:
We study some properties of the Gelfand–Kirillov dimension in a non-necessarily unital context, in particular, its Morita invariance when the algebras have local units, and its commutativity with direct limits. We then give some applications in the context of graph algebras, which embraces, among some others, path algebras and Cohn and Leavitt path algebras. In particular, we determine the GK-dimension of these algebras in full generality, so extending the main result in A. Alahmadi, H. Alsulami, S. K. Jain and E. Zelmanov, Leavitt Path algebras of finite Gelfand–Kirillov dimension, J. Algebra Appl. 11(6) (2012) 1250225–1250231.
Style APA, Harvard, Vancouver, ISO itp.
8

Martinez, C. "Gelfand-Kirillov dimension in Jordan Algebras". Transactions of the American Mathematical Society 348, nr 1 (1996): 119–26. http://dx.doi.org/10.1090/s0002-9947-96-01528-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Smith, S. Paul, i James J. Zhang. "A remark on Gelfand-Kirillov dimension". Proceedings of the American Mathematical Society 126, nr 2 (1998): 349–52. http://dx.doi.org/10.1090/s0002-9939-98-04074-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Leroy, A., i I. Matczuk. "Gelfand-Kirillov dimension of certain localizations". Archiv der Mathematik 53, nr 5 (listopad 1989): 439–47. http://dx.doi.org/10.1007/bf01324719.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Dimension de Gelfand-Kirillov"

1

Gilmartin, Paul. "Connected Hopf algebras of finite Gelfand-Kirillov dimension". Thesis, University of Glasgow, 2016. http://theses.gla.ac.uk/7780/.

Pełny tekst źródła
Streszczenie:
Following the seminal work of Zhuang, connected Hopf algebras of finite GK-dimension over algebraically closed fields of characteristic zero have been the subject of several recent papers. This thesis is concerned with continuing this line of research and promoting connected Hopf algebras as a natural, intricate and interesting class of algebras. We begin by discussing the theory of connected Hopf algebras which are either commutative or cocommutative, and then proceed to review the modern theory of arbitrary connected Hopf algebras of finite GK-dimension initiated by Zhuang. We next focus on the (left) coideal subalgebras of connected Hopf algebras of finite GK-dimension. They are shown to be deformations of commutative polynomial algebras. A number of homological properties follow immediately from this fact. Further properties are described, examples are considered and invariants are constructed. A connected Hopf algebra is said to be "primitively thick" if the difference between its GK-dimension and the vector-space dimension of its primitive space is precisely one . Building on the results of Wang, Zhang and Zhuang, we describe a method of constructing such a Hopf algebra, and as a result obtain a host of new examples of such objects. Moreover, we prove that such a Hopf algebra can never be isomorphic to the enveloping algebra of a semisimple Lie algebra, nor can a semisimple Lie algebra appear as its primitive space. It has been asked in the literature whether connected Hopf algebras of finite GK-dimension are always isomorphic as algebras to enveloping algebras of Lie algebras. We provide a negative answer to this question by constructing a counterexample of GK-dimension 5. Substantial progress was made in determining the order of the antipode of a finite dimensional pointed Hopf algebra by Taft and Wilson in the 1970s. Our final main result is to show that the proof of their result can be generalised to give an analogous result for arbitrary pointed Hopf algebras.
Style APA, Harvard, Vancouver, ISO itp.
2

Galvão, Lucas. "A dimensão de Gelfand-Kirillov de certas álgebras". Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-18032015-164005/.

Pełny tekst źródła
Streszczenie:
A dimensão de Gelfand-Kirillov mede a taxa de crescimento assintótico de álgebras. Como fornece informações importantes sobre a sua estrutura, este invariante se tornou uma das ferramentas padrão no estudo de álgebras de dimensão infinita. Neste trabalho apresentamos as propriedades básicas da dimensão de Gelfand-Kirillov de álgebras e de módulos, e também mostramos o cálculo da dimensão de Gelfand-Kirillov de algumas álgebras e módulos, sendo o exemplo mais importante o cálculo da dimensão de Gelfand-Kirillov da álgebra de Weyl An.
The Gelfand-Kirillov dimension measures the asymptotic rate of growth of algebras. Since it provides important structural information, this invariant has become one of the standard tools in the study of innite dimensional algebras. In this work we present the basic properties of the Gelfand-Kirillov dimension of algebras and modules, and we also show the calculation of the Gelfand-Kirillov dimension of some algebras and modules, being the most important example the calculation of the Gelfand-Kirillov dimension of the Weyl algebra An.
Style APA, Harvard, Vancouver, ISO itp.
3

Machado, Gustavo Grings 1987. "Dimensão de Gelfand-Kirillov em álgebras relativamente livres". [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306359.

Pełny tekst źródła
Streszczenie:
Orientador: Plamen Emilov Kochloukov
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-25T04:30:00Z (GMT). No. of bitstreams: 1 Machado_GustavoGrings_D.pdf: 808427 bytes, checksum: 4482c43f5d1998040317e1873220ce8c (MD5) Previous issue date: 2014
Resumo: Neste trabalho estudamos o invariante denominado dimensão de Gelfand-Kirillov para álgebras com identidades polinomiais, sobretudo para álgebras não-associativas, com o objetivo de melhor compreender a estrutura das identidades polinomiais. Ultimamente este invariante tem ganhado importância, uma vez que ele é relativamente fácil de calcular e, de certa forma, é capaz de diferenciar o crescimento de duas álgebras. Para álgebras associativas a GK-dimensão mostrou-se muito útil ao detectar que álgebras que por um lado são PI-equivalentes sobre corpos de característica zero pelo Teorema do Produto Tensorial de Kemer, por outro lado não são PI-equivalentes quando a característica do corpo infinito é positiva. Isto aponta para o surgimento de novos ????-ideais, conjuntos de identidades satisfeitas por uma álgebra, que são ???? -primos para corpos infinitos de característica positiva. Ainda é um problema em aberto a classificação e a compreensão destes ????-ideais em característica positiva, embora seja bem compreendida para PI-Álgebras associativas em característica zero, segundo a teoria de Kemer. Entretanto a situação é ainda menos clara para variedades de álgebras não-associativas como Álgebras de Jordan ou Álgebras de Lie. Sabe-se muito pouco sobre resultados que apontem para uma classificação de ????-ideais fora do caso associativo, até mesmo sobre corpos de característica zero. Inclusive se conhece pouco sobre o comportamento dos ????-ideais, mesmo de álgebras simples. Aqui damos um passo, calculando algumas GK-dimensões para álgebras relativamente livres de posto finito a partir da expressão da série de Hilbert. Destacamos em especial que calculamos a dimensão de Gelfand-Kirillov da álgebra relativamente livre de qualquer posto finito da álgebra de Lie das matrizes 2 × 2 de traço zero sobre um corpo infinito de característica diferente de 2. Acreditamos que estes resultados permitirão ajudar a compreender melhor o comportamento dos ????-ideais em álgebras não-associativas
Abstract: In this thesis we study the invariant called Gelfand-Kirillov Dimension for algebras with polynomial identities, mainly for non-associative algebras, aiming at better understanding the structure of the polynomial identities. This invariant has gained importance lately since in many cases it is relatively easy to calculate and, surprisingly, it is capable of distinguishing the growth of two algebras. For associative algebras GK-dimension was found to be very useful to detect that algebras which on one hand are PI-equivalent over fields of characteristic zero, according to Tensor Product Theorem of Kemer, on the other hand are not PI-equivalent when the characteristic of the infinite base field is positive. This points towards the rise of new ????-ideals, sets of identities satisfied by an algebra, which are ????-prime for infinite fields of positive characteristic. The classification and the understanding of such ????-ideals in positive characteristic are still open problems, although it is well understood for associative PI-Algebras in characteristic zero, using Kemer¿s theory. The situation is much less clear for varieties of non-associative algebras like Jordan Algebras or Lie Algebras. Very little is known about results towards a classification of ????-ideals outside the associative case, even over fields of characteristic zero. Accordingly little is known concerning the behavior of ????-ideals, even for simple algebras. Here we make a step towards this goal by computing some GK-dimensions of some relatively free algebras of finite rank by using the expression of the Hilbert series. In particular we compute the Gelfand-Kirillov dimension of the relatively free algebra of any finite rank generated by the Lie Algebra of the 2 × 2 traceless matrices over an infinite field of characteristic different from 2. We hope that results in this direction will contribute to a better understanding of the behavior of ????-ideals in non-associative algebras
Doutorado
Matematica
Doutor em Matemática
Style APA, Harvard, Vancouver, ISO itp.
4

Campbell, Chris John Montgomery. "Deformation theory of a birationally commutative surface of Gelfand-Kirillov dimension 4". Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/22886.

Pełny tekst źródła
Streszczenie:
Let K be the field of complex numbers. In this thesis we construct new examples of noncommutative surfaces of GK-dimension 4 using the language of formal and infinitesimal deformations as introduced by Gerstenhaber. Our approach is to find families of deformations of a certain well known GK-dimension 4 birationally commutative surface defined by Zhang and Smith in unpublished work cited in [YZ06], which we call A. Let B* and K* be respectively the bar and Koszul complexes of a PBW algebra C = KhV / (R) . We construct a graph whose vertices are elements of the free algebra KhV i and edges are relations in R. We define a map m2 : B2 ! K2 that extends to a chain map m* : B* → K*. This map allows the Gerstenhaber bracket structure to be transferred from the bar complex to the Koszul complex. In particular, m2 provides a mechanism for algorithmically determining the set of infinitesimal deformations with vanishing primary obstruction. Using the computer algebra package 'Sage' [Dev15] and a Python package developed by the author [Cam], we calculate the degree 2 component of the second Hochschild cohomology of A. Furthermore, using the map m2 we describe the variety U ⊆ HH2/2 (A) of infinitesimal deformations with vanishing primary obstruction. We further show that U decomposes as a union of 3 irreducible subvarieties Vg, Vq and Vu. More generally, let C be a Koszul algebra with relations R, and let E be a localisation of C at some (left and right) Ore set. Since R is homogeneous in degree two, there is an embedding R ,↪ C⊗C and in the following we identify R with its (nonzero) image under this map. We construct an injective linear map ~⋀ : HH²(C) → HH²(E) and prove that if f ∈ HH²(E) satisfies f(R) ⊆ C then f ∈ Im(~⋀). In this way we describe a relationship between infinitesimal deformations of C with those of E. Rogalski and Sierra [RS12] have previously examined a family of deformations of A arising from automorphism of the surface P1 X P1. By applying our understanding of the map ~⋀ we show that these deformations correspond to the variety of infinitesimal deformations Vg. Furthermore, we show that deformations defined similarly by automorphisms of other minimal rational surfaces also correspond to infinitesimal deformations lying in Vg. We introduce a new family of deformations of A, which we call Aq. We show that elements of this family have families of deformations arising from certain quantum analogues of geometric automorphisms of minimal rational surfaces, as defined by Alev and Dumas. Furthermore, we show that after taking the semi-classical limit q → 1 we obtain a family of deformations of A whose infinitesimal deformation lies in Vq. Finally, we apply a heuristic search method in the space of Hochschild 2-cocycles of A. This search yields another new family of deformations of A. We show that elements of this family are non-noetherian PBW noncommutative surfaces with GK-dimension 4. We further show that elements of this family can have as function skew field the division ring of the quantum plane Kq(u; v), the division ring of the first Weyl algebra D1(K) or the commutative field K(u; v).
Style APA, Harvard, Vancouver, ISO itp.
5

LOBÃO, Carlos David de Carvalho. "A dimensão de Gelfand-Kirillov e algumas aplicações a PI-Teoria". Universidade Federal de Campina Grande, 2009. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1211.

Pełny tekst źródła
Streszczenie:
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-22T14:49:45Z No. of bitstreams: 1 CARLOS DAVID DE CARVALHO LOBÃO - DISSERTAÇÃO PPGMAT 2009..pdf: 418073 bytes, checksum: b2deb42599e396408cd91ddf1721d8eb (MD5)
Made available in DSpace on 2018-07-22T14:49:45Z (GMT). No. of bitstreams: 1 CARLOS DAVID DE CARVALHO LOBÃO - DISSERTAÇÃO PPGMAT 2009..pdf: 418073 bytes, checksum: b2deb42599e396408cd91ddf1721d8eb (MD5) Previous issue date: 2009-03
As álgebras verbalmente primas são bem conhecidas em característica 0. Já sobre corpos de característica p > 2 pouco sabemos sobre elas. Apresentamos modelos genéricos e calcularemos a dimensão de Gelfand-kirillov para as álgebras E⊗E, Aa,b, Ma,b(E)⊗E e Ma,b(E)⊗E. Como consequência, obteremos a prova de não PI-equivalência entre álgebras importantes para PI-Teoria em características positiva.
The verbally prime algebras are well understood in characteristic 0 while over a field of characteristic p > 2 little is known about them. In this work we discuss some sharp differents between these two generics cases for the characteristc. We exhibit constructions of generic models. By using these models we compute the Gelfand-Kirillov dimension of the relatively free algebras of rank m in the varieties generated by E⊗E, Aa,b, Ma,b(E)⊗E e Ma,b(E)⊗E. As consequence we obtain the PI non equivalence of important algebras for the PI theory in positive characteristic.
Style APA, Harvard, Vancouver, ISO itp.
6

Heymann-Heidelberger, Eric [Verfasser], i István [Akademischer Betreuer] Heckenberger. "The Gelfand-Kirillov dimension of rank 2 Nichols algebras of diagonal type / Eric Heymann-Heidelberger ; Betreuer: István Heckenberger". Marburg : Philipps-Universität Marburg, 2020. http://d-nb.info/1215293240/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Zhao, Xiangui. "Groebner-Shirshov bases in some noncommutative algebras". London Mathematical Society, 2014. http://hdl.handle.net/1993/24315.

Pełny tekst źródła
Streszczenie:
Groebner-Shirshov bases, introduced independently by Shirshov in 1962 and Buchberger in 1965, are powerful computational tools in mathematics, science, engineering, and computer science. This thesis focuses on the theories, algorithms, and applications of Groebner-Shirshov bases for two classes of noncommutative algebras: differential difference algebras and skew solvable polynomial rings. This thesis consists of three manuscripts (Chapters 2--4), an introductory chapter (Chapter 1) and a concluding chapter (Chapter 5). In Chapter 1, we introduce the background and the goals of the thesis. In Chapter 2, we investigate the Gelfand-Kirillov dimension of differential difference algebras. We find lower and upper bounds of the Gelfand-Kirillov dimension of a differential difference algebra under some conditions. We also give examples to demonstrate that our bounds are sharp. In Chapter 3, we generalize the Groebner-Shirshov basis theory to differential difference algebras with respect to any left admissible ordering and develop the Groebner-Shirshov basis theory of finitely generated free modules over differential difference algebras. By using the theory we develop, we present an algorithm to compute the Gelfand-Kirillov dimensions of finitely generated modules over differential difference algebras. In Chapter 4, we first define skew solvable polynomial rings, which are generalizations of solvable polynomial algebras and (skew) PBW extensions. Then we present a signature-based algorithm for computing Groebner-Shirshov bases in skew solvable polynomial rings over fields. Our algorithm can detect redundant reductions and therefore it is more efficient than the traditional Buchberger algorithm. Finally, in Chapter 5, we summarize our results and propose possible future work.
Style APA, Harvard, Vancouver, ISO itp.
8

Bois, Jean-Marie. "Corps enveloppants des algèbres de Lie en dimension infinie et en caractéristique positive". Phd thesis, Université de Reims - Champagne Ardenne, 2004. http://tel.archives-ouvertes.fr/tel-00371835.

Pełny tekst źródła
Streszczenie:
Soient g une k-algèbre de Lie, U(g) son algèbre enveloppante, K(g) le corps des fractions de U(g). L'objet de cette thèse est d'étudier des propriétés algébriques du corps gauche K(g) dans les deux cas suivants : d'une part si k est de caractéristique 0 et g est de dimension infinie ; d'autre part si k est de caractéristique positive et g est de dimension finie.

On suppose k de caractéristique nulle. On définit d'abord la notion de "degré de transcendance de niveau q" pour les algèbres de Poisson. Cette notion est introduite à partir de la notion de dimension de niveau q définie par V. Pétrogradsky pour les algèbres associatives et les algèbres de Lie. On démontre, sous des hypothèses peu restrictives sur g, que le degré de transcendance de niveau q+1 de K(g) est égal à la dimension de niveau q de g.

On s'attache ensuite à l'étude de la famille des algèbres de type Witt définies par R. Yu. On construit ainsi des familles infinies de corps gauches deux à deux non isomorphes mais de même degré de transcendance de niveau 3 donné. On étudie aussi la question des centralisateurs dans les corps enveloppants des parties positives des algèbres de type Witt. On établit en particulier le résultat suivant : il existe des algèbres de Lie non commutatives de dimension infinie g telles que le premier corps de Weyl ne se plonge pas dans K(g).

Supposons maintenant k de caractéristique p>0. On étudie le cas particuliers des algèbres de Lie suivantes : les algèbres gl(n) ; les algèbres sl(n) lorsque p ne divise pas n ; l'algèbre de Witt modulaire W(1) et une sous-algèbre P de l'algèbre de Witt W(2) (s'identifiant à un produit tensoriel de l'algèbre de Lie W(1) avec une algèbre associative de polynômes tronqués). Dans tous les cas, on démontre que le corps enveloppant est isomorphe à un corps de Weyl. Pour les algèbres W(1) et P, on démontre en outre que le centre de l'algèbre enveloppante est un anneau factoriel, en accord avec une conjecture récente de A. Braun et C. Hajarnavis.
Style APA, Harvard, Vancouver, ISO itp.
9

Sanmarco, Guillermo Luis. "Aportes a la clasificación de álgebras de Hopf punteadas de dimensión de Gelfand-Kirillov finita". Doctoral thesis, 2020. http://hdl.handle.net/11086/17223.

Pełny tekst źródła
Streszczenie:
Tesis (Doctor en Matemática)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2020.
Esta tesis es un aporte a la clasificación de las álgebras de Hopf punteadas de dimensión de Gelfand-Kirillov finita sobre cuerpos algebraicamente cerrados y de característica cero. En una primera instancia nos concentramos en álgebras de Hopf punteadas de dimensión finita sobre grupos no abelianos y cuya trenza infinitesimal no es simple. En este contexto, estudiamos un espacio vectorial trenzado particular que puede realizarse como módulo de Yetter-Drinfeld sobre una familia de grupos no abelianos y que da lugar a un álgebra de Nichols de dimensión finita. Con el objetivo de clasificar las álgebras de Hopf punteadas que tiene esta trenza infinitesimal, seguimos los pasos propuestos por el método del levante. Encontramos una presentación minimal del álgebra de Nichols, crucial para demostrar la validez de la conjetura de generación en grado 1 en nuestro contexto. Introducimos un álgebra de pre-Nichols distinguida que tiene dimensión de Gelfand-Kirillov 2 y es una extensión del álgebra de Nichols por una subálgebra de Hopf trenzada normal. Finalmente describimos todas las álgebras de Hopf punteadas de dimensión finita cuya trenza infinitesimal es la trenza en cuestión; mas aún probamos que todas ellas son deformaciones por cociclo de la correspondiente bosonización del álgebra de Nichols. En la segunda parte de esta tesis consideramos dos familias de espacios vectoriales trenzados de tipo diagonal: los de tipo Cartan y los que tienen diagrama de Dynkin completamente disconexo. El objetivo es determinar, para cada una de estas trenzas, todas las álgebras de pre-Nichols de dimensión de Gelfand-Kirillov finita. Para ello introducimos la noción de álgebras de pre-Nichols eminentes. Mostramos que, salvo algunas excepciones, las álgebras de pre-Nichols distinguidas son eminentes. Este tratamiento se asienta en el conocimiento de las relaciones que definen, en cada caso, al álgebra de pre-Nichols distinguida, y las excepciones están relacionadas con fenómenos propios de los casos en los que intervienen raíces de la unidad de orden pequeño. Para dos de los casos excepcionales mencionados anteriormente, construimos álgebras de pre-Nichols eminentes que cubren propiamente a las correspondientes distinguidas.
In a first instance we focus on finite dimensional pointed Hopf algebras over non-abelian groups and with non-simple infinitesimal braiding.In this context we study a fixed braided vector space that can be realized as Yetter-Drinfeld module over a family of non-abelian groups, and it gives rise to a finite dimensional Nichols algebra. With the purpose of classifying finite dimensional pointed Hopf algebras with this fixed infinitesimal braiding, we follow the steps proposed by the Lifting method.We find a minimal presentation by generators and relations of the Nichols algebras, which will be crucial in our proof of the validity of the generation in degree one in this context. We introduce a distinguished pre-Nichols algebra, which has Gelfand-Kirillov dimension 2 and can be obtained as an extension of the Nichols algebra by a braided normal Hopf subalgebra. Finally, we describe all finite dimensional pointed Hopf algebras with this infinitesimal braiding, furthermore we show that all of them are cocycle deformations of the corresponding bosonization of the Nichols algebra. In the second part of this thesis we consider two families of braided vector spaces of diagonal type, namely: those of Cartan type and those with totally disconnected Dynkin diagram. The goal is to determine, for each of these braidings, all their pre-Nichols algebras with finite Gelfand-Kirillov dimension. With this purpose we introduce the notion of eminent pre-Nichols algebra. We show that, up to some exceptions, the distinguished pre-Nichols algebras are in fact eminent. This treatment is based on the knowledge of the defining relations of the distinguished pre-Nichols algebra, and the exceptions are related to particular phenomena that arise when roots of unity of small orders are involved. Eminent pre-Nichols algebras are constructed for two of the aforementioned exceptional cases.
Fil: Sanmarco, Guillermo Luis. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: Sanmarco, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Córdoba. Centro de Investigaciones y Estudios de Matemática; Argentina
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Dimension de Gelfand-Kirillov"

1

Krause, G. R. Growth of algebras and Gelfand-Kirillov dimension. Boston: Pitman Advanced Pub. Program, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Krause, G. R. Growth of algebras and Gelfand-Kirillov dimension. Providence, R.I: American Mathematical Society, 2000.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Krause, G. R. Growth of Algebras and Gelfand Kirillov-Dimension. Wiley & Sons, Incorporated, John, 1986.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Procesi, Claudio, Eli Aljadeff, Antonio Giambruno i Amitai Regev. Rings with Polynomial Identities and Finite Dimensional Representations of Algebras. American Mathematical Society, 2020.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Dimension de Gelfand-Kirillov"

1

McConnell, J., i J. Robson. "Gelfand-Kirillov dimension". W Graduate Studies in Mathematics, 297–338. Providence, Rhode Island: American Mathematical Society, 2001. http://dx.doi.org/10.1090/gsm/030/09.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Nǎstǎsescu, Constantin, i Freddy van Oystaeyen. "The Gelfand-Kirillov Dimension". W Dimensions of Ring Theory, 313–42. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3835-9_11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Krause, Günter, i Thomas Lenagan. "Gelfand-Kirillov dimension of algebras". W Graduate Studies in Mathematics, 13–22. Providence, Rhode Island: American Mathematical Society, 1999. http://dx.doi.org/10.1090/gsm/022/03.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Krause, Günter, i Thomas Lenagan. "Gelfand-Kirillov dimension of related algebras". W Graduate Studies in Mathematics, 23–35. Providence, Rhode Island: American Mathematical Society, 1999. http://dx.doi.org/10.1090/gsm/022/04.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Granja, Ángel, José Ángel Hermida i Alain Verschoren. "Computing the Gelfand-Kirillov Dimension II". W Ring Theory And Algebraic Geometry, 33. Boca Raton: CRC Press, 2001. http://dx.doi.org/10.1201/9780203907962-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Bueso, José, José Gómez-Torrecillas i Alain Verschoren. "The Gelfand-Kirillov dimension and the Hilbert polynomial". W Algorithmic Methods in Non-Commutative Algebra, 239–61. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0285-0_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

McConnell, J. C. "Quantum groups, filtered rings and Gelfand-Kirillov dimension". W Lecture Notes in Mathematics, 139–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/bfb0091258.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Matczuk, J. "The Gelfand-Kirillov Dimension of Poincare-Birkhoff-Witt Extensions". W Perspectives in Ring Theory, 221–26. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2985-2_18.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Wallach, Nolan R. "On the Gelfand–Kirillov dimension of a discrete series representation". W Representations of Reductive Groups, 505–16. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23443-4_18.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

McConnell, J. C., i J. C. Robson. "Gelfand-Kirillov Dimension, Hilbert-Samuel polynomials and Rings of Differential Operators". W Perspectives in Ring Theory, 233–38. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2985-2_20.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Dimension de Gelfand-Kirillov"

1

Mao, Lingling. "The Gelfand-kirillov Dimension of Quantized enveloping Algebra of Uq(B2)". W 2019 IEEE International Conference on Computation, Communication and Engineering (ICCCE). IEEE, 2019. http://dx.doi.org/10.1109/iccce48422.2019.9010783.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii