Gotowa bibliografia na temat „Digital laser”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Digital laser”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Digital laser"
Guang Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan i in. "Laser Digital Cinema Projector". Journal of Display Technology 4, nr 3 (wrzesień 2008): 314–18. http://dx.doi.org/10.1109/jdt.2008.924163.
Pełny tekst źródłaShimura, Mikihiko, Koichi Imanaka, Hiroshi Sekii, Akira Fujimoto i Takeshi Takagi. "Semiconductor laser digital scanner". Optical Engineering 29, nr 3 (1990): 230. http://dx.doi.org/10.1117/12.55582.
Pełny tekst źródłaIchioka, Y., T. Kobayashi, H. Kitagawa i T. Suzuki. "Digital scanning laser microscope". Applied Optics 24, nr 5 (1.03.1985): 691. http://dx.doi.org/10.1364/ao.24.000691.
Pełny tekst źródłaPiqué, Alberto, Heungsoo Kim, Ray Auyeung, Jiwen Wang, Andrew Birnbaum i Scott Mathews. "Laser-Based Digital Microfabrication". NIP & Digital Fabrication Conference 25, nr 1 (1.01.2009): 394–97. http://dx.doi.org/10.2352/issn.2169-4451.2009.25.1.art00108_1.
Pełny tekst źródłaLi, Qingfeng, David Grojo, Anne-Patricia Alloncle, Boris Chichkov i Philippe Delaporte. "Digital laser micro- and nanoprinting". Nanophotonics 8, nr 1 (16.10.2018): 27–44. http://dx.doi.org/10.1515/nanoph-2018-0103.
Pełny tekst źródłaHuang, Cing-Yi, Kuo-Chih Chang i Shu-Chun Chu. "Experimental Investigation of Generating Laser Beams of on-Demand Lateral Field Distribution from Digital Lasers". Materials 12, nr 14 (10.07.2019): 2226. http://dx.doi.org/10.3390/ma12142226.
Pełny tekst źródłaPlesch, A., U. Klingbeil i J. Bille. "Digital laser scanning fundus camera". Applied Optics 26, nr 8 (15.04.1987): 1480. http://dx.doi.org/10.1364/ao.26.001480.
Pełny tekst źródłaNgcobo, Sandile, Igor Litvin, Liesl Burger i Andrew Forbes. "Demonstrating a Rewritable Digital Laser". Optics and Photonics News 24, nr 12 (1.12.2013): 28. http://dx.doi.org/10.1364/opn.24.12.000028.
Pełny tekst źródłaLang, Marion, Rudolf Neuhaus i Jürgen Stuhler. "Digital Revolution in Laser Control". Optik & Photonik 10, nr 1 (luty 2015): 38–41. http://dx.doi.org/10.1002/opph.201500005.
Pełny tekst źródłaKowalik, John, John J. Rosinski i Bradford R. Siepman. "Digital business telephones-project laser". Bell Labs Technical Journal 3, nr 1 (14.08.2002): 122–33. http://dx.doi.org/10.1002/bltj.2097.
Pełny tekst źródłaRozprawy doktorskie na temat "Digital laser"
Crossingham, Grant James. "A digital laser slopemeter". Thesis, University of Southampton, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.481690.
Pełny tekst źródłaRanély-Vergé-Dépré, Claude-Alban. "Digital laser and Coherent Beam combination". Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX131.
Pełny tekst źródłaCoherent Beam Combining (CBC) is an innovative architectural approach to designing efficient laser sources combining high average power and high peak power (kW/GW), while offering great flexibility in the spatial shaping of the resulting beam. Ytterbium (Yb)-doped fiber amplifiers offer excellent thermal management thanks to the fiber's high surface-to-volume ratio (facilitating cooling) and high efficiency made possible by the long interaction lengths accessible and the low quantum defect of the Yb dopant. Moreover, these fibers feature a gain spectral width that supports pulse durations of down to a few hundred femtoseconds. This makes it possible to amplify femtosecond pulse trains at high repetition rates. The two prototypes studied in this thesis use the combination of this technology with CBC architecture. The first is based on a composite pupil with 61 tiled beams, offering individual control of its channels and introducing the concept of digital laser. Its pulse duration is reduced by a non-linear "post-compression" technique, enabling it to retain its digital properties. The second prototype, with its superposition of 7 pupils, is being studied and developed for its greater theoretical efficiency
Mosayebi, Mahshad. "Digital Laser Speckle Image Correlation". OpenSIUC, 2017. https://opensiuc.lib.siu.edu/theses/2131.
Pełny tekst źródłaHeath, Daniel. "Digital micromirror devices and femtosecond laser pulses for rapid laser micromachining". Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/417275/.
Pełny tekst źródłaNewberry, Shawn. "Laser Speckle Patterns with Digital Image Correlation". OpenSIUC, 2021. https://opensiuc.lib.siu.edu/theses/2885.
Pełny tekst źródłaAmer, Eynas. "Pulsed laser ablation studied using digital holography". Doctoral thesis, Luleå tekniska universitet, Strömningslära och experimentell mekanik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-18194.
Pełny tekst źródłaGodkänd; 2009; 20091018 (eyname); DISPUTATION Ämnesområde: Experimentell mekanik/Experimental Mechanics Opponent: Reader in Laser Engineering Bill O’Neill, University of Cambridge, UK Ordförande: Professor Mikael Sjödahl, Luleå tekniska universitet Tid: Fredag den 20 november 2009, kl 10.00 Plats: E 231, Luleå tekniska universitet
Cronin, Christopher Joseph. "Digital frequency demodulation for a laser vibrometer". Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-11102009-020344/.
Pełny tekst źródłaAmer, Mohamed Eynas. "Pulsed laser ablation studied using digital holography /". Luleå : Department of Applied Physics and Mechanical Engineering, Luleå University of Technology, 2009. http://pure.ltu.se/ws/fbspretrieve/3315450.
Pełny tekst źródłaLarsson, Ola. "Digital Implementation of a Laser Doppler Perfusion Monitor". Thesis, Linköping University, Department of Electrical Engineering, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7091.
Pełny tekst źródłaUnder 20 års tid har Perimed AB utvecklat och tillverkat LDPM- och LDPI-instrument som är baserade på en analog filterkonstruktion. De analoga komponenterna i konstruktionen är komplexa och icke-linjära med hänsyn till frekvens och de driver även med temperaturen. Funktionen hos konstruktionen beror också kraftigt av att de analoga komponenterna trimmas in under produktionen.
Det här examensarbetet syftar till att ta fram en alternativ design baserad kring en digital signal processor. Den digitala signalbehandlingsmetod som beskrivs baseras på väl förankrade laser-Doppler perfusionsteorier. Den implementerade signalbehandlingsalgoritmen beräknar perfusionen ur en samplad fotodetektorström, som har filtrerats till AC- och DC-komponenter med hjälp av ett analogt detektorkort. Algoritmen producerar en råperfusionssignal genom att beräkna en frekvensviktad summa av fotodetektorströmmens effektspektrum. Kompensation för detektorns brus och normalisering med ljusintensitet har också implementerats.
Den presenterade implementationen har verifierats mot ett exemplar av LDPM-enheten PF 5010 som har använts som referensinstrument vid alla mätningar. Mätningar in vitro har påvisat liknande mätresultat som referensinstrumentet för en referensvätska med hög perfusion och även för ett statiskt mätobjekt. Vidare har implementationen verifierats med mätningar in vivo på hud, vilket har påvisat nära nog identiska signalnivåer och gensvar på värmeprovokationer som referensinstrumentet.
Den demonstrerade uppfinningen förenklar tillverkningen av instrumenten eftersom antalet komponenter reduceras avsevärt och därmed antalet produktionstester. Användandet av en DSP reducerar dessutom instrumentets temperaturkänslighet eftersom den ersätter flera temperaturkänsliga komponenter.
For 20 years Perimed AB have been developing and manufacturing LDPM and LDPI instruments based on an analog filter construction. The analog components in the construction are complex and suffer from non-linear frequency dependency and temperature drifts. The functionality of the design is also heavily depending on analog components which need to be trimmed in the production.
In this thesis, an alternative design employing a digital signal processor is presented. The signal processing method used is based on well established laser Doppler perfusion theories. The implemented signal processing algorithm calculates the perfusion from a sampled photodetector current, pre-filtered into AC and DC components by an analog detector card. The algorithm produces a raw perfusion signal by calculating a frequency weighted sum of the power spectral density, PSD, of the photocurrent. Detector noise compensation and light intensity normalization of the signal has also been implemented.
The presented digital implementation has been verified using the PF 5010 LDPM unit as a reference. In vitro measurements have shown similar behaviour as the reference in a highly perfused reference fluid as well as for a static scatterer. Furthermore, the DSP implementation has been verified on in vivo measurements of skin, showing nearly identical signal levels and response to heat provocation as the reference.
The demonstrated invention improves the manufacturability of the instruments since it reduces the number of electronic components significantly and thus, the amount of manufacturing tests. The DSP also reduces the temperature sensitivity of the instrument since it replaces several analog components sensitive to temperature changes.
Erk, Patrick P. (Patrick Peter). "Digital signal processing techniques for laser-doppler anemometry". Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/43026.
Pełny tekst źródłaKsiążki na temat "Digital laser"
S, Dongare A., i Bhabha Atomic Research Centre, red. Digital beam profiler for infrared lasers. Mumbai: Bhabha Atomic Research Centre, 2003.
Znajdź pełny tekst źródłaBlutinger, Jonathan David. Digital Cuisine: Food Printing and Laser Cooking. [New York, N.Y.?]: [publisher not identified], 2022.
Znajdź pełny tekst źródłaHunter, David Mackenzie. Digital radiography by laser scanned readout of amorphous selenium. Ottawa: National Library of Canada, 1996.
Znajdź pełny tekst źródłaMontes, Felix G. Digital data acquisition for laser radar for vibration analysis. Monterey, Calif: Naval Postgraduate School, 1998.
Znajdź pełny tekst źródłaBowen, M. F. Ultimate ocean depth packaging for a digital ring laser gyroscope. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1998.
Znajdź pełny tekst źródłaF, Marshall Gerald, red. Handbook of optical and laser scanning. New York: Marcel Dekker, 2004.
Znajdź pełny tekst źródłaGauthier, V. Application of PIDV to complex flows: Velocity field measurements in the front of a heavy gas cloud. Rhode Saint Genese, Belgium: Von Karman Institute for Fluid Dynamics, 1988.
Znajdź pełny tekst źródłaShi Weiming yan jiu shi. Mac ying yin da hang: Xia zai, bo fang, fen xiang, dui kao DVD, zhuan dang. Taibei Shi: Qi biao chu ban gu fen you xian gong si, 2008.
Znajdź pełny tekst źródłaChambers, Mark L. Hewlett-Packard official recordable CD handbook. Foster City, CA: IDG Books Worldwide, 2000.
Znajdź pełny tekst źródłaWei-Jei, Yang, Yamamoto Fujio, Mayinger F. 1931-, American Society of Mechanical Engineers. Fluids Engineering Division. i ASME/JSME Fluids Engineering and Laser Anemometry Conference and Exhibition (1995 : Hilton Head, S.C.), red. Flow visualization and image processing of multiphase systems: Presented at the 1995 ASME/JSME Fluids Engineering and Laser Anemometry Conference and Exhibition, August 13-18, 1995, Hilton Head, South Carolina. New York: American Society of Mechanical Engineers, 1995.
Znajdź pełny tekst źródłaCzęści książek na temat "Digital laser"
Rinkevichyus, B. S., O. A. Evtikhieva i I. L. Raskovskaya. "Digital Refractogram Recording and Processing". W Laser Refractography, 135–67. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7397-9_7.
Pełny tekst źródłaPiqué, Alberto. "Laser Transfer Techniques for Digital Microfabrication". W Laser Precision Microfabrication, 259–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10523-4_11.
Pełny tekst źródłaBreda, Alberto, Salvatore Micali, Angelo Territo, Mino Rizzo, Giulio Bevilacqua, Iacopo Meneghetti, Maria Chiara Sighinolfi, Bernardo Rocco i Giampaolo Bianchi. "Confocal Laser Endomicroscopy". W Urologic Surgery in the Digital Era, 187–202. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63948-8_11.
Pełny tekst źródłaBrettel, Hans. "Pseudocolour Displays in Digital Image Processing". W Laser/Optoelektronik in der Technik / Laser/Optoelectronics in Engineering, 349–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-48372-1_73.
Pełny tekst źródłaTooley, F. A. P. "Digital Logic Elements for Optical Computing". W Laser Science and Technology, 403–22. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4757-0378-8_25.
Pełny tekst źródłaSchlüter, P. "Positional Correction During Laser Cutting by Means of Digital Image Processing". W Laser in der Technik / Laser in Engineering, 234–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84736-3_40.
Pełny tekst źródłaHutzler, P. J. S., S. Berber i W. Waidelich. "An Interactive System for Digital Optical Image Processing". W Laser/Optoelektronik in der Technik / Laser/Optoelectronics in Engineering, 218–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82638-2_43.
Pełny tekst źródłaHutzler, P. "Opto-Electronic Sensor Systems for Digital Image Processing". W Laser/Optoelektronik in der Technik / Laser/Optoelectronics in Engineering, 106–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83174-4_26.
Pełny tekst źródłaPedrini, G., Y. Zou i H. J. Tiziani. "Speckle- and Digital Holographic Interferometry (A Comparison)". W Laser in Forschung und Technik / Laser in Research and Engineering, 485–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80263-8_104.
Pełny tekst źródłaLi, Xiaojie, Bao-zhen Ge, Dan Zhao, Qing-guo Tian i K. David Young. "Auto-calibration of a Laser 3D Color Digitization System". W Digital Human Modeling, 691–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02809-0_73.
Pełny tekst źródłaStreszczenia konferencji na temat "Digital laser"
Tani, Shuntaro. "Digital Twins for Laser Microprocessing Based on Large-Scale Experimental Data". W Laser Applications Conference, LM1B.3. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/lac.2024.lm1b.3.
Pełny tekst źródłaSementin, V. V., A. P. Pogoda i A. S. Boreysho. "Filtering methods for reconstructed digital holograms". W 2024 International Conference Laser Optics (ICLO), 240. IEEE, 2024. http://dx.doi.org/10.1109/iclo59702.2024.10624570.
Pełny tekst źródłaSoman, Pranav. "Addressing key challenges in multimaterial and multiscale digital projection stereolithography". W Laser 3D Manufacturing XII, redaktorzy Henry Helvajian, Bo Gu i Hongqiang Chen, 11. SPIE, 2025. https://doi.org/10.1117/12.3040820.
Pełny tekst źródłaPetrov, V. M., D. V. Masygin, A. A. Sevryugin, E. V. Shalymov, E. K. Iurieva, D. V. Venediktov i V. Yu Venediktov. "Holographic Interferometers for Optical Digital Medical Tomography". W 2024 International Conference Laser Optics (ICLO), 176. IEEE, 2024. http://dx.doi.org/10.1109/iclo59702.2024.10624127.
Pełny tekst źródłaNumazawa, Keisuke, Kota Kumagai i Yoshio Hayasaki. "Volumetric micro clouds drawn with femtosecond laser pulses". W Digital Holography and Three-Dimensional Imaging, W5B.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/dh.2024.w5b.4.
Pełny tekst źródłaDu, Qiu-shuang, Wan-cheng Liu, Yu-hai Li, Song Guan i Yi-ning Yang. "A high dynamic range imaging method based on the digital micromirror device". W Laser Technology and Applications, redaktor Pu Zhou, 48. SPIE, 2024. https://doi.org/10.1117/12.3047822.
Pełny tekst źródłaStevens, Rock, Josiah Dykstra, Wendy Knox Everette i Michelle L. Mazurek. "How to Hack Compliance: Using Lessons Learned to Repeatably Audit Compliance Programs for Digital Security Concerns". W Learning from Authoritative Security Experiment Results. Reston, VA: Internet Society, 2020. http://dx.doi.org/10.14722/laser.2020.23003.
Pełny tekst źródłaTakeuchi, Eric B., Graham W. Flint, Robert Bergstedt, Paul J. Solone, Dicky Lee i Peter F. Moulton. "Laser Digital Cinema". W Photonics West 2001 - Electronic Imaging, redaktor Ming H. Wu. SPIE, 2001. http://dx.doi.org/10.1117/12.420785.
Pełny tekst źródłaSmeu, Emil, Niculae N. Puscas i Ion M. Popescu. "Digital laser powermeter". W ROMOPTO '97: Fifth Conference on Optics, redaktorzy Valentin I. Vlad i Dan C. Dumitras. SPIE, 1998. http://dx.doi.org/10.1117/12.312715.
Pełny tekst źródłaAptowicz, Kevin B., Ahmed M. Alsayed, Yilong L. Han i Arjun G. Yodh. "Optical Artifacts in Digital Video Microscopy". W Laser Science. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/ls.2006.lmh4.
Pełny tekst źródłaRaporty organizacyjne na temat "Digital laser"
Shamey, Renzo, Traci A. M. Lamar i Uikyung Jung. Digital Textile Printing with Laser Engraving: Surface Contour Modification and Color Properties. Ames (Iowa): Iowa State University. Library, styczeń 2019. http://dx.doi.org/10.31274/itaa.9459.
Pełny tekst źródłaKomerath, N. M., O. D. Wong i R. Mahalingam. Tunable Solid-State Laser and High Resolution Digital Cameras for Lagrangian Vortex Imaging. Fort Belvoir, VA: Defense Technical Information Center, grudzień 2000. http://dx.doi.org/10.21236/ada391255.
Pełny tekst źródłaMiles, Richard B. Development of Pulse-Burst Laser Source and Digital Image Processing for Measurements of High-Speed, Time-Evolving Flow. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2000. http://dx.doi.org/10.21236/ada381328.
Pełny tekst źródłaMiles, Richard B. AASERT: Development of Pulse-Burst Laser Source and Digital Image Processing for Measurements of High-Speed, Time-Evolving Flow. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2000. http://dx.doi.org/10.21236/ada383154.
Pełny tekst źródłaRandell. L51857 Evaluation of Digital Image Acquisition and Processing Technologies for Ground Movement Monitoring. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), styczeń 2008. http://dx.doi.org/10.55274/r0011244.
Pełny tekst źródłaKubica, Stefan, Tobias Peuschke-Bischof, Belinda Müller i Robin Avci. Fahrmanöver für Geradeausfahrt. Technische Hochschule Wildau, 2019. http://dx.doi.org/10.15771/1264.
Pełny tekst źródłaLeón, Carlos. Digital Operational Resilience Act (DORA). FNA, lipiec 2023. http://dx.doi.org/10.69701/deff9232.
Pełny tekst źródłaBaral, Aniruddha, Jeffery Roesler i Junryu Fu. Early-age Properties of High-volume Fly Ash Concrete Mixes for Pavement: Volume 2. Illinois Center for Transportation, wrzesień 2021. http://dx.doi.org/10.36501/0197-9191/21-031.
Pełny tekst źródłaMorneault, K., S. Rengasami, M. Kalla i G. Sidebottom. Integrated Services Digital Network (ISDN) Q.921-User Adaptation Layer. RFC Editor, styczeń 2006. http://dx.doi.org/10.17487/rfc4233.
Pełny tekst źródłaGreen, Malcolm. Diamond-Shaped Semiconductor Ring Lasers for Analog to Digital Photonic Converters. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2004. http://dx.doi.org/10.21236/ada421293.
Pełny tekst źródła