Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Differential equations.

Artykuły w czasopismach na temat „Differential equations”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Differential equations”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Tabor, Jacek. "Differential equations in metric spaces". Mathematica Bohemica 127, nr 2 (2002): 353–60. http://dx.doi.org/10.21136/mb.2002.134163.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Andres, Jan, i Pavel Ludvík. "Topological entropy and differential equations". Archivum Mathematicum, nr 1 (2023): 3–10. http://dx.doi.org/10.5817/am2023-1-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Laksmikantham, V. "Set differential equations versus fuzzy differential equations". Applied Mathematics and Computation 164, nr 2 (maj 2005): 277–94. http://dx.doi.org/10.1016/j.amc.2004.06.068.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Khakale, Savita Santu, Kailas Sahadu Ahire i Dinkar Pitambar Patil. "Soham Transform in Fractional Differential Equations". Indian Journal Of Science And Technology 17, nr 33 (24.08.2024): 3481–87. http://dx.doi.org/10.17485/ijst/v17i33.1383.

Pełny tekst źródła
Streszczenie:
Objectives: Soham transforms is one of the appropriate tools for solving fractional differential equations that are flexible enough to adapt to different purposes. Methods: Integral transform methods help to simplify fractional differential equations into algebraic equations. Enable the use of classical methods to solve fractional differential equations. Findings: In this paper, the Soham transform can solve linear homogeneous and non-homogeneous Fractional Differential Equations with constant coefficients. Finally, we use this integral transform to obtain the analytical solution of non-homogeneous fractional differential equations. Novelty: The Soham transform method is a suitable and very effective tool for obtaining analytical solutions of fractional differential equations with constant coefficients. Soham Transform is more multipurpose as the Laplace transform is limited to fractional differential equations. Soham Transform is in the development stage. Keywords: Soham Transform, Fractional Differential Equations, Integral transforms, Reimann­ Liouville Fractional Integral, Caputo Fractional Derivative
Style APA, Harvard, Vancouver, ISO itp.
5

Parasidis, I. N. "EXTENSION AND DECOMPOSITION METHOD FOR DIFFERENTIAL AND INTEGRO-DIFFERENTIAL EQUATIONS". Eurasian Mathematical Journal 10, nr 3 (2019): 48–67. http://dx.doi.org/10.32523/2077-9879-2019-10-3-48-67.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Saltas, Vassilios, Vassilios Tsiantos i Dimitrios Varveris. "Solving Differential Equations and Systems of Differential Equations with Inverse Laplace Transform". European Journal of Mathematics and Statistics 4, nr 3 (14.06.2023): 1–8. http://dx.doi.org/10.24018/ejmath.2023.4.3.192.

Pełny tekst źródła
Streszczenie:
The inverse Laplace transform enables the solution of ordinary linear differential equations as well as systems of ordinary linear differentials with applications in the physical and engineering sciences. The Laplace transform is essentially an integral transform which is introduced with the help of a suitable generalized integral. The ultimate goal of this work is to introduce the reader to some of the basic ideas and applications for solving initially ordinary differential equations and then systems of ordinary linear differential equations.
Style APA, Harvard, Vancouver, ISO itp.
7

Chrastinová, Veronika, i Václav Tryhuk. "Parallelisms between differential and difference equations". Mathematica Bohemica 137, nr 2 (2012): 175–85. http://dx.doi.org/10.21136/mb.2012.142863.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Tumajer, František. "Controllable systems of partial differential equations". Applications of Mathematics 31, nr 1 (1986): 41–53. http://dx.doi.org/10.21136/am.1986.104183.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Kurzweil, Jaroslav, i Alena Vencovská. "Linear differential equations with quasiperiodic coefficients". Czechoslovak Mathematical Journal 37, nr 3 (1987): 424–70. http://dx.doi.org/10.21136/cmj.1987.102170.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Sergey, Piskarev, i Siegmund Stefan. "UNSTABLE MANIFOLDS FOR FRACTIONAL DIFFERENTIAL EQUATIONS". Eurasian Journal of Mathematical and Computer Applications 10, nr 3 (27.09.2022): 58–72. http://dx.doi.org/10.32523/2306-6172-2022-10-3-58-72.

Pełny tekst źródła
Streszczenie:
We prove the existence of unstable manifolds for an abstract semilinear fractional differential equation Dαu(t) = Au(t) + f(u(t)), u(0) = u 0 , on a Banach space. We then develop a general approach to establish a semidiscrete approximation of unstable manifolds. The main assumption of our results are naturally satisfied. In particular, this is true for operators with compact resolvents and can be verified for finite elements as well as finite differences methods.
Style APA, Harvard, Vancouver, ISO itp.
11

Džurina, Jozef. "Comparison theorems for functional differential equations". Mathematica Bohemica 119, nr 2 (1994): 203–11. http://dx.doi.org/10.21136/mb.1994.126077.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Loud, Warren S., A. N. Tikhonov, A. B. Vasil'eva i A. G. Sveshnikov. "Differential Equations." American Mathematical Monthly 94, nr 3 (marzec 1987): 308. http://dx.doi.org/10.2307/2323408.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Croft, Tony, D. A. Sanchez, R. C. Allen Jr. i W. T. Kyner. "Differential Equations". Mathematical Gazette 73, nr 465 (październik 1989): 249. http://dx.doi.org/10.2307/3618470.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Brindley, Graham, D. Lomen i J. Mark. "Differential Equations". Mathematical Gazette 73, nr 466 (grudzień 1989): 353. http://dx.doi.org/10.2307/3619335.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Abbott, Steve, i SMP. "Differential Equations". Mathematical Gazette 79, nr 484 (marzec 1995): 186. http://dx.doi.org/10.2307/3620064.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Berkshire, Frank, A. N. Tikhonov, A. B. Vasil'eva i A. G. Sveshnikov. "Differential Equations". Mathematical Gazette 70, nr 452 (czerwiec 1986): 168. http://dx.doi.org/10.2307/3615804.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Lee, Tzong-Yow. "Differential Equations". Annals of Probability 29, nr 3 (lipiec 2001): 1047–60. http://dx.doi.org/10.1214/aop/1015345595.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Barrett, K. E. "Differential equations". Applied Mathematical Modelling 11, nr 3 (czerwiec 1987): 233–34. http://dx.doi.org/10.1016/0307-904x(87)90010-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

He, Ji-Huan, i Zheng-Biao Li. "Converting fractional differential equations into partial differential equations". Thermal Science 16, nr 2 (2012): 331–34. http://dx.doi.org/10.2298/tsci110503068h.

Pełny tekst źródła
Streszczenie:
A transform is suggested in this paper to convert fractional differential equations with the modified Riemann-Liouville derivative into partial differential equations, and it is concluded that the fractional order in fractional differential equations is equivalent to the fractal dimension.
Style APA, Harvard, Vancouver, ISO itp.
20

Knorrenschild, Michael. "Differential/Algebraic Equations As Stiff Ordinary Differential Equations". SIAM Journal on Numerical Analysis 29, nr 6 (grudzień 1992): 1694–715. http://dx.doi.org/10.1137/0729096.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

N O, Onuoha. "Transformation of Parabolic Partial Differential Equations into Heat Equation Using Hopf Cole Transform". International Journal of Science and Research (IJSR) 12, nr 6 (5.06.2023): 1741–43. http://dx.doi.org/10.21275/sr23612082710.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

MANOFF, S. "GEODESIC AND AUTOPARALLEL EQUATIONS OVER DIFFERENTIABLE MANIFOLDS". International Journal of Modern Physics A 11, nr 21 (20.08.1996): 3849–74. http://dx.doi.org/10.1142/s0217751x96001814.

Pełny tekst źródła
Streszczenie:
The notions of ordinary, covariant and Lie differentials are considered as operators over differentiable manifolds with different (not only by sign) contravariant and covariant affine connections and metric. The difference between the interpretations of the ordinary differential as a covariant basic vector field and as a component of a contravariant vector field is discussed. By means of the covariant metric and the ordinary differential the notion of the line element is introduced and the geodesic equation is obtained and compared with the autoparallel equation.
Style APA, Harvard, Vancouver, ISO itp.
23

L Suresh, P., i Ch Satyanarayana. "Numerical Study of Higher Order Differential Equations Using Differential Transform Method". International Journal of Science and Research (IJSR) 11, nr 9 (5.09.2022): 1105–7. http://dx.doi.org/10.21275/sr22915122737.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Lazopoulos, Konstantinos A. "On Λ-Fractional Differential Equations". Foundations 2, nr 3 (5.09.2022): 726–45. http://dx.doi.org/10.3390/foundations2030050.

Pełny tekst źródła
Streszczenie:
Λ-fractional differential equations are discussed since they exhibit non-locality and accuracy. Fractional derivatives form fractional differential equations, considered as describing better various physical phenomena. Nevertheless, fractional derivatives fail to satisfy the prerequisites of differential topology for generating differentials. Hence, all the sources of generating fractional differential equations, such as fractional differential geometry, the fractional calculus of variations, and the fractional field theory, are not mathematically accurate. Nevertheless, the Λ-fractional derivative conforms to all prerequisites demanded by differential topology. Hence, the various mathematical forms, including those derivatives, do not lack the mathematical accuracy or defects of the well-known fractional derivatives. A summary of the Λ-fractional analysis is presented with its influence on the sources of differential equations, such as fractional differential geometry, field theorems, and calculus of variations. Λ-fractional ordinary and partial differential equations will be discussed.
Style APA, Harvard, Vancouver, ISO itp.
25

Elishakoff, Isaac. "Differential Equations of Love and Love of Differential Equations". Journal of Humanistic Mathematics 9, nr 2 (lipiec 2019): 226–46. http://dx.doi.org/10.5642/jhummath.201902.15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Barles, Guy, Rainer Buckdahn i Etienne Pardoux. "Backward stochastic differential equations and integral-partial differential equations". Stochastics and Stochastic Reports 60, nr 1-2 (luty 1997): 57–83. http://dx.doi.org/10.1080/17442509708834099.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Marjona, Kosimova. "APPLICATION OF DIFFERENTIAL EQUATIONS IN VARIOUS FIELDS OF SCIENCE". American Journal of Applied Science and Technology 4, nr 6 (1.06.2024): 76–81. http://dx.doi.org/10.37547/ajast/volume04issue06-15.

Pełny tekst źródła
Streszczenie:
The article, "Application of Differential Equations in Various Fields of Science," explores the use of differential equations for modeling economic and natural phenomena. It examines two main models of economic dynamics: the Evans model for the market of a single product, and the Solow model for economic growth.The author emphasizes the importance of proving the existence of solutions to differential equations in order to verify the accuracy of mathematical models. They also discuss the role of electronic computers in developing the theory of differential equations and its connection with other branches of mathematics such as functional analysis, algebra, and probability theory.Furthermore, the article highlights the significance of various solution methods for differential equations, including the Fourier method, Ritz method, Galerkin method, and perturbation theory.Special attention is paid to the theory of partial differential equations, the theory of differential operators, and problems arising in physics, mechanics, and technology. Differential equations are the theoretical foundation of almost all scientific and technological models and a key tool for understanding various processes in science, such as in physics, chemistry, and biology.Examples of processes described by differential equations include normalreproduction, explosive growth, and the logistic curve. Cases of using differential equations to model deterministic, finite-dimensional, and differentiable phenomena, as well as the impact of catch quotas on population dynamics, are discussed.In conclusion, the significance of differential equations for research and their role in stimulating the development of new mathematical areas is emphasized.
Style APA, Harvard, Vancouver, ISO itp.
28

Frittelli, Simonetta, Carlos Kozameh i Ezra T. Newman. "Differential Geometry from Differential Equations". Communications in Mathematical Physics 223, nr 2 (1.10.2001): 383–408. http://dx.doi.org/10.1007/s002200100548.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Hino, Yoshiyuki, i Taro Yoshizawa. "Total stability property in limiting equations for a functional-differential equation with infinite delay". Časopis pro pěstování matematiky 111, nr 1 (1986): 62–69. http://dx.doi.org/10.21136/cpm.1986.118265.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Chrastina, Jan. "On formal theory of differential equations. I." Časopis pro pěstování matematiky 111, nr 4 (1986): 353–83. http://dx.doi.org/10.21136/cpm.1986.118285.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Chrastina, Jan. "On formal theory of differential equations. II." Časopis pro pěstování matematiky 114, nr 1 (1989): 60–105. http://dx.doi.org/10.21136/cpm.1989.118369.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Li, Tongxing, Yuriy V. Rogovchenko i Chenghui Zhang. "Oscillation of fourth-order quasilinear differential equations". Mathematica Bohemica 140, nr 4 (2015): 405–18. http://dx.doi.org/10.21136/mb.2015.144459.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Kwapisz, Marian. "On solving systems of differential algebraic equations". Applications of Mathematics 37, nr 4 (1992): 257–64. http://dx.doi.org/10.21136/am.1992.104508.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Franců, Jan. "Weakly continuous operators. Applications to differential equations". Applications of Mathematics 39, nr 1 (1994): 45–56. http://dx.doi.org/10.21136/am.1994.134242.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Grace, S. R., i Bikkar S. Lalli. "Oscillation theorems for certain neutral differential equations". Czechoslovak Mathematical Journal 38, nr 4 (1988): 745–53. http://dx.doi.org/10.21136/cmj.1988.102270.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Ohriska, Ján. "Oscillation of differential equations and $v$-derivatives". Czechoslovak Mathematical Journal 39, nr 1 (1989): 24–44. http://dx.doi.org/10.21136/cmj.1989.102276.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Gopalsamy, K., B. S. Lalli i B. G. Zhang. "Oscillation of odd order neutral differential equations". Czechoslovak Mathematical Journal 42, nr 2 (1992): 313–23. http://dx.doi.org/10.21136/cmj.1992.128330.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Džurina, Jozef. "Comparison theorem for third-order differential equations". Czechoslovak Mathematical Journal 44, nr 2 (1994): 357–66. http://dx.doi.org/10.21136/cmj.1994.128464.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Grace, S. R., i B. S. Lalli. "Oscillation criteria for forced neutral differential equations". Czechoslovak Mathematical Journal 44, nr 4 (1994): 713–24. http://dx.doi.org/10.21136/cmj.1994.128489.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Fraňková, Dana. "Substitution method for generalized linear differential equations". Mathematica Bohemica 116, nr 4 (1991): 337–59. http://dx.doi.org/10.21136/mb.1991.126028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Chrastina, Jan. "On formal theory of differential equations. III." Mathematica Bohemica 116, nr 1 (1991): 60–90. http://dx.doi.org/10.21136/mb.1991.126196.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Tiwari, Chinta Mani, i Richa Yadav. "Distributional Solutions to Nonlinear Partial Differential Equations". International Journal of Research Publication and Reviews 5, nr 4 (11.04.2024): 6441–47. http://dx.doi.org/10.55248/gengpi.5.0424.1085.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Freeman, J. S., i S. A. Velinsky. "Comparison of the Dynamics of Conventional and Worm-Gear Differentials". Journal of Mechanisms, Transmissions, and Automation in Design 111, nr 4 (1.12.1989): 605–10. http://dx.doi.org/10.1115/1.3259043.

Pełny tekst źródła
Streszczenie:
The differential mechanism has been used for many years and a variety of unique designs have been developed for particular applications. This paper investigates the performance of both the conventional bevel-gear differential and the worm-gear differential as used in vehicles. The worm-gear differential is a design in which the bevel gears of the conventional differential are replaced by worm gear/worm wheel pairs. The resultant differential exhibits some interesting behavior which has made this differential desirable for use in high performance and off-road vehicles. In this work, an Euler-Lagrange formulation of the equations of motion of the conventional and worm-gear differentials allows comparison of their respective behavior. Additionally, each differential is incorporated into a full vehicle model to observe their effects on gross vehicle response. The worm-gear differential is shown to exhibit the desirable characteristics of a limited-slip differential while maintaining the conventional differential’s ability to differentiate output shaft speeds at all power levels.
Style APA, Harvard, Vancouver, ISO itp.
44

Balamuralitharan, S., i . "MATLAB Programming of Nonlinear Equations of Ordinary Differential Equations and Partial Differential Equations". International Journal of Engineering & Technology 7, nr 4.10 (2.10.2018): 773. http://dx.doi.org/10.14419/ijet.v7i4.10.26114.

Pełny tekst źródła
Streszczenie:
My idea of this paper is to discuss the MATLAB program for various mathematical modeling in ordinary differential equations (ODEs) and partial differential equations (PDEs). Idea of this paper is very useful to research scholars, faculty members and all other fields like engineering and biology. Also we get easily to find the numerical solutions from this program.
Style APA, Harvard, Vancouver, ISO itp.
45

Harir, Atimad, Said Melliani i Lalla Saadia Chadli. "Fuzzy Conformable Fractional Differential Equations". International Journal of Differential Equations 2021 (4.02.2021): 1–6. http://dx.doi.org/10.1155/2021/6655450.

Pełny tekst źródła
Streszczenie:
In this study, fuzzy conformable fractional differential equations are investigated. We study conformable fractional differentiability, and we define fractional integrability properties of such functions and give an existence and uniqueness theorem for a solution to a fuzzy fractional differential equation by using the concept of conformable differentiability. This concept is based on the enlargement of the class of differentiable fuzzy mappings; for this, we consider the lateral Hukuhara derivatives of order q ∈ 0,1 .
Style APA, Harvard, Vancouver, ISO itp.
46

Devaney, Robert L., Beverly West, Steven Strogatz, Jean Marie McDill i John Cantwell. "Interactive Differential Equations." American Mathematical Monthly 105, nr 7 (sierpień 1998): 687. http://dx.doi.org/10.2307/2589275.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Brauer, Fred, Vladimir I. Arnol'd i Roger Cook. "Ordinary Differential Equations." American Mathematical Monthly 100, nr 8 (październik 1993): 810. http://dx.doi.org/10.2307/2324802.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Hibberd, S., Richard Bellman i George Adomian. "Partial Differential Equations". Mathematical Gazette 71, nr 458 (grudzień 1987): 341. http://dx.doi.org/10.2307/3617100.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Abbott, Steve, i Lawrence C. Evans. "Partial Differential Equations". Mathematical Gazette 83, nr 496 (marzec 1999): 185. http://dx.doi.org/10.2307/3618751.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Abram, J., W. E. Boyce i R. C. DiPrima. "Elementary Differential Equations". Mathematical Gazette 78, nr 481 (marzec 1994): 83. http://dx.doi.org/10.2307/3619457.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii