Gotowa bibliografia na temat „Different Dimensional Nanostructure”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Different Dimensional Nanostructure”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Different Dimensional Nanostructure"
Gupta, Vinod Kumar, Njud S. Alharbie, Shilpi Agarwal i Vladimir A. Grachev. "New Emerging One Dimensional Nanostructure Materials for Gas Sensing Application: A Mini Review". Current Analytical Chemistry 15, nr 2 (19.02.2019): 131–35. http://dx.doi.org/10.2174/1573411014666180319151407.
Pełny tekst źródłaYang, Ming, Xiaohua Chen, Zidong Wang, Yuzhi Zhu, Shiwei Pan, Kaixuan Chen, Yanlin Wang i Jiaqi Zheng. "Zero→Two-Dimensional Metal Nanostructures: An Overview on Methods of Preparation, Characterization, Properties, and Applications". Nanomaterials 11, nr 8 (23.07.2021): 1895. http://dx.doi.org/10.3390/nano11081895.
Pełny tekst źródłaRoy, Souradeep, Sourav Sain, Shikha Wadhwa, Ashish Mathur, Santosh Dubey i Susanta S. Roy. "Electrochemical impedimetric analysis of different dimensional (0D–2D) carbon nanomaterials for effective biosensing of L-tyrosine". Measurement Science and Technology 33, nr 1 (27.10.2021): 014002. http://dx.doi.org/10.1088/1361-6501/ac2cf3.
Pełny tekst źródłaBasioli, Lovro, Krešimir Salamon, Marija Tkalčević, Igor Mekterović, Sigrid Bernstorff i Maja Mičetić. "Application of GISAXS in the Investigation of Three-Dimensional Lattices of Nanostructures". Crystals 9, nr 9 (13.09.2019): 479. http://dx.doi.org/10.3390/cryst9090479.
Pełny tekst źródłaChen, Hsin-Yu, Yi-Hong Xiao, Lin-Jiun Chen, Chi-Ang Tseng i Chuan-Pei Lee. "Low-Dimensional Nanostructures for Electrochemical Energy Applications". Physics 2, nr 3 (11.09.2020): 481–502. http://dx.doi.org/10.3390/physics2030027.
Pełny tekst źródłaSousa Neto, Vicente de Oliveira, Gilberto Dantas Saraiva, A. J. Ramiro De Castro, Paulo de Tarso Cavalcante Freire i Ronaldo Ferreira Do Nascimento. "Electrodeposition of One-Dimensional Nanostructures: Environmentally Friendly Method". Journal of Composites and Biodegradable Polymers 10 (28.12.2022): 19–42. http://dx.doi.org/10.12974/2311-8717.2022.10.03.
Pełny tekst źródłaPan, Hui, Yuan Ping Feng, Jianyi Lin, Chuan Jun Liu i Thye Shen Wee. "Catalyst-Free Template-Synthesis of ZnO Nanopetals at 60 °C". Journal of Nanoscience and Nanotechnology 7, nr 2 (1.02.2007): 696–99. http://dx.doi.org/10.1166/jnn.2007.140.
Pełny tekst źródłaShaalan, Nagih M. "Promising Novel Barium Carbonate One-Dimensional Nanostructures and Their Gas Sensing Application: Preparation and Characterization". Chemosensors 10, nr 6 (17.06.2022): 230. http://dx.doi.org/10.3390/chemosensors10060230.
Pełny tekst źródłaSu, Yi, Xiao Ping Zou, Xiang Min Meng i Gong Qing Teng. "2-D ZnO Nanostructures on Aluminum by Solution Method". Advanced Materials Research 123-125 (sierpień 2010): 607–10. http://dx.doi.org/10.4028/www.scientific.net/amr.123-125.607.
Pełny tekst źródłaManabeng, Matshidiso, Bernard S. Mwankemwa, Richard O. Ocaya, Tshwafo E. Motaung i Thembinkosi D. Malevu. "A Review of the Impact of Zinc Oxide Nanostructure Morphology on Perovskite Solar Cell Performance". Processes 10, nr 9 (7.09.2022): 1803. http://dx.doi.org/10.3390/pr10091803.
Pełny tekst źródłaRozprawy doktorskie na temat "Different Dimensional Nanostructure"
"Photoluminescence studies of quasi-one-dimensional ZnSe nanostructures in different ambient gases". 2005. http://library.cuhk.edu.hk/record=b5892666.
Pełny tekst źródłaThesis (M.Phil.)--Chinese University of Hong Kong, 2005.
Includes bibliographical references (leaves 67-69).
Text in English; abstracts in English and Chinese.
Ng Ching Man = Zai bu tong qi ti zhong yi de wei xi hua xin na mi jie gou de fa guang yan jiu / Wu Jingwen.
Contents
Acknowledgements --- p.ii
Abstract --- p.iii
Chapter Chapter 1- --- Introduction --- p.1
Chapter 1.1 --- Background --- p.1
Chapter 1.2 --- Motivation --- p.3
Chapter 1.3 --- Our Work --- p.4
Chapter Chapter 2 - --- Experiment --- p.5
Chapter 2.1 --- MOCVD System --- p.5
Chapter 2.2 --- Metalorganic Sources --- p.5
Chapter 2.3 --- Substrates --- p.7
Chapter 2.4 --- Growth of ZnSe Nanowires --- p.7
Chapter 2.5 --- Sample Passivation --- p.8
Chapter 2.6 --- PL measurements --- p.8
Chapter 2.7 --- Ambient Gases --- p.9
Chapter 2.8 --- Gases Handling Apparatus --- p.9
Chapter 2.9 --- Ambient Gases and Laser Power Control in PL Measurements --- p.11
Chapter Chapter 3 - --- Characterization --- p.13
Chapter 3.1 --- Photoluminescence --- p.13
Chapter 3.2 --- Secondary Electron Microscopy --- p.14
Chapter 3.3 --- X-Ray diffraction --- p.15
Chapter Chapter 4 - --- Results --- p.16
Chapter 4.1 --- ZnSe Nanowires Grown on Si(100) --- p.16
Chapter 4.1.1 --- Morphology and Structure of the As Synthesized Sample --- p.16
Chapter 4.1.2 --- Morphology and Structure of the Sample after Passivation --- p.17
Chapter 4.2 --- Effect of Ambient Condition on Photoluminescence --- p.19
Chapter 4.2.1 --- PL in Vacuum Ambient --- p.20
Chapter 4.2.2 --- PL Spectra in different Ambient Gases --- p.21
Chapter 4.2.3 --- PL Reversibility --- p.23
Chapter 4.3 --- "Effect of Pressure, Concentration and Power of Excitation on the Photoluminescence of Nanowires" --- p.26
Chapter 4.3.1 --- Ambient Pressure --- p.27
Chapter 4.3.1.1 --- H2S --- p.27
Chapter 4.3.1.2 --- H2 --- p.30
Chapter 4.3.1.3 --- CO --- p.32
Chapter 4.3.2 --- Ambient Concentration --- p.33
Chapter 4.3.2.1 --- H2S --- p.33
Chapter 4.3.2.2 --- H2 --- p.36
Chapter 4.3.3 --- Excitation Power --- p.38
Chapter 4.3.3.1 --- H2S --- p.38
Chapter 4.3.3.2 --- H2 --- p.40
Chapter 4.3.3.3 --- CO --- p.41
Chapter Chapter 5 - --- Discussions --- p.42
Chapter 5.1 --- Quality of nanowires --- p.42
Chapter 5.2 --- Surface Reaction --- p.43
Chapter 5.2.1 --- Surface States --- p.43
Chapter 5.2.2 --- Gas-surface interaction --- p.46
Chapter 5.2.2.1 --- Physiosorption --- p.46
Chapter 5.2.2.2 --- Chemisorption --- p.47
Chapter 5.3 --- (NH4)2S passivation --- p.48
Chapter 5.3.1 --- Etching --- p.48
Chapter 5.3.2 --- (NH4)2S passivation --- p.48
Chapter 5.4 --- PL increase in Vacuum --- p.50
Chapter 5.5 --- Effects of different Gases --- p.50
Chapter 5.5.1 --- H2S --- p.50
Chapter 5.5.2 --- H2 --- p.53
Chapter 5.5.3 --- CO --- p.54
Chapter 5.5.4 --- Other explanations --- p.54
Chapter 5.6 --- The amount of Intensity Change --- p.56
Chapter 5.7 --- Rates of Adsorption and Desorption --- p.56
Chapter Chapter 6 - --- Conclusions --- p.58
Appendices --- p.60
Chapter I - --- Fitted parameter of the adsorption and desorption of H2S and CO --- p.60
Chapter II - --- Calculation of gas and photon fluxes --- p.65
References --- p.67
Cheung, JASON. "Simulation of Engineered Nanostructured Thin Films". Thesis, 2009. http://hdl.handle.net/1974/1731.
Pełny tekst źródłaThesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2009-03-31 13:22:11.843
Książki na temat "Different Dimensional Nanostructure"
Lin, Nian, i Sebastian Stepanow. Designing low-dimensional nanostructures at surfaces by supramolecular chemistry. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.10.
Pełny tekst źródłaTsaousidou, M. Thermopower of low-dimensional structures: The effect of electron–phonon coupling. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.13.
Pełny tekst źródłaNikolic, Branislav K., Liviu P. Zarbo i Satofumi Souma. Spin currents in semiconductor nanostructures: A non-equilibrium Green-function approach. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.24.
Pełny tekst źródłaMcGuiness, C. L., R. K. Smith, M. E. Anderson, P. S. Weiss i D. L. Allara. Nanolithography using molecular films and processing. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.23.
Pełny tekst źródłaCzęści książek na temat "Different Dimensional Nanostructure"
Morgen, Per, J. Drews, Rajnish Dhiman i Peter Nielsen. "Nanostructured Materials in Different Dimensions for Sensing Applications". W Nanotechnological Basis for Advanced Sensors, 257–73. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0903-4_29.
Pełny tekst źródłaTsuji, Nobuhiro, Shigenobu Ogata, Haruyuki Inui, Isao Tanaka i Kyosuke Kishida. "Proposing the Concept of Plaston and Strategy to Manage Both High Strength and Large Ductility in Advanced Structural Materials, on the Basis of Unique Mechanical Properties of Bulk Nanostructured Metals". W The Plaston Concept, 3–34. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7715-1_1.
Pełny tekst źródłaHuang, Yi-June, i Chuan-Pei Lee. "Nanostructured Transition Metal Compounds as Highly Efficient Electrocatalysts for Dye-Sensitized Solar Cells". W Solar Cells [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.94021.
Pełny tekst źródłaKavita i Pooja Rani. "Semiconductor Nanostructures and Synthesis Techniques". W Synthesis and Applications of Semiconductor Nanostructures, 1–28. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815080117123040006.
Pełny tekst źródłaMurali, A. "Bioinspired Nanomaterials for Supercapacitor Applications". W Bioinspired Nanomaterials for Energy and Environmental Applications, 141–74. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901830-5.
Pełny tekst źródłaKhan, Hasmat, Saswati Sarkar, Moumita Pal, Susanta Bera i Sunirmal Jana. "Indium Oxide Based Nanomaterials: Fabrication Strategies, Properties, Applications, Challenges and Future Prospect". W Indium [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.94743.
Pełny tekst źródłaHaußmann, A., L. M. Eng i S. Cherifi-Hertel. "Three-Dimensional Optical Analysis of Ferroelectric Domain Walls". W Domain Walls, 152–84. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198862499.003.0007.
Pełny tekst źródłaA. Tabbakh, Thamer, Prashant Tyagi, Deepak Anandan, Michael J. Sheldon i Saeed Alshihri. "Boron Nitride Fabrication Techniques and Physical Properties". W Characteristics and Applications of Boron [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.106675.
Pełny tekst źródłaKumar Sur, Ujjal. "Nano Porous Anodic Aluminum Oxide: An Overview on its Fabrication and Potential Applications". W Recent Advances in Analytical Techniques: Volume 6, 140–63. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815124156123060006.
Pełny tekst źródłaMorari do Nascimento, Gustavo. "Two Spectroscopies as Main Source for Investigation of Polymer-Clay Materials". W Clay Science and Technology. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95825.
Pełny tekst źródłaStreszczenia konferencji na temat "Different Dimensional Nanostructure"
Gillet, Jean-Numa, Yann Chalopin i Sebastian Volz. "Thermal Design of Highly-Efficient Thermoelectric Materials With Atomic-Scale Three-Dimensional Phononic Crystals". W ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43538.
Pełny tekst źródłaSebastine, I. M., i D. J. Williams. "Requirements for the Manufacturing of Scaffold Biomaterial With Features at Multiple Scales". W ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82515.
Pełny tekst źródłaYu, Choongho, Wanyoung Jang, Tobias Hanrath, Dohyung Kim, Zhen Yao, Brian Korgel, Li Shi, Zhong Lin Wang, Deyu Li i Arunava Majumdar. "Thermal and Thermoelectric Measurements of Low Dimensional Nanostructures". W ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47263.
Pełny tekst źródłaPatra, Sabyasachi, Debasis Sen, Chhavi Agarwal, Ashok K. Pandey, S. Mazumder i A. Goswami. "Synthesis, characterisation and counterion dependent mesoscopic modifications of ionomer nanocomposites having different dimensional silver nanostructures". W SOLID STATE PHYSICS: PROCEEDINGS OF THE 57TH DAE SOLID STATE PHYSICS SYMPOSIUM 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4790995.
Pełny tekst źródłaBuehler, Markus J. "Defining Nascent Bone by the Molecular Nanomechanics of Mineralized Collagen Fibrils". W ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12137.
Pełny tekst źródłaLam, K. T. "Fractal Dimension and Multifractal Spectra of INGAN/GAN Self-Assembled Quantum Dots Films". W ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing. ASMEDC, 2008. http://dx.doi.org/10.1115/msec_icmp2008-72012.
Pełny tekst źródłaLe, Khai Q., i Hiromi Okamoto. "Dissymmetry between left- and right-handed circularly polarized photoluminescence enhancement of plasmonic nanostructures". W JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.5a_a410_2.
Pełny tekst źródłaYang, Yang, Deyu Li, Youfei Jiang, Zhe Guan, Terry T. Xu i Juekuan Yang. "Measurement of the Intrinsic Thermal Conductivity of Individual Silicon Nanoribbons". W ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87665.
Pełny tekst źródłaQian, Dong, i Qingjin Zheng. "Coarse-Grained Modeling and Simulation of Nanoscale Systems Based on Discrete Hyper-Elastic Model". W ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68088.
Pełny tekst źródłaQu, Chuang, Shamus McNamara i Kevin Walsh. "Synthesis of Nano-Dots and Lines by Glancing Angle Deposition With Corrals". W ASME 2022 17th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/msec2022-83720.
Pełny tekst źródła