Artykuły w czasopismach na temat „Dielectric Properties - Nanocomposites”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Dielectric Properties - Nanocomposites”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Feng, Zunpeng, Yanan Hao, Jiameng Zhang, Jing Qin, Limin Guo i Ke Bi. "Dielectric Properties of Two-Dimensional Bi2Se3 Hexagonal Nanoplates Modified PVDF Nanocomposites". Advances in Polymer Technology 2019 (3.07.2019): 1–8. http://dx.doi.org/10.1155/2019/8720678.
Pełny tekst źródłaLi, Qi, Feihua Liu, Tiannan Yang, Matthew R. Gadinski, Guangzu Zhang, Long-Qing Chen i Qing Wang. "Sandwich-structured polymer nanocomposites with high energy density and great charge–discharge efficiency at elevated temperatures". Proceedings of the National Academy of Sciences 113, nr 36 (22.08.2016): 9995–10000. http://dx.doi.org/10.1073/pnas.1603792113.
Pełny tekst źródłaYang, Jiaming, Congji Liu, Changji Zheng, Hong Zhao, Xuan Wang i Mingze Gao. "Effects of Interfacial Charge on the DC Dielectric Properties of Nanocomposites". Journal of Nanomaterials 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/2935202.
Pełny tekst źródłaPolsterova, Helena. "Dielectric Properties of Nanocomposites Based on Epoxy Resin". ECS Transactions 105, nr 1 (30.11.2021): 461–66. http://dx.doi.org/10.1149/10501.0461ecst.
Pełny tekst źródłaLi, Yan Xia, Jin Long Xie, Zhen Ming Chu, Xu Sheng Wang i Xi Yao. "Dielectric and Energy Storage Properties of Polyvinylidene Fluoride/Barium Titanate Nanocomposites". Advanced Materials Research 833 (listopad 2013): 365–69. http://dx.doi.org/10.4028/www.scientific.net/amr.833.365.
Pełny tekst źródłaPattanshetti, Virappa Virupaxappa, G. M. Shashidhara i Mysore Guruswamy Veena. "Dielectric and thermal properties of magnesium oxide/poly(aryl ether ketone) nanocomposites". Science and Engineering of Composite Materials 25, nr 5 (25.09.2018): 915–25. http://dx.doi.org/10.1515/secm-2016-0273.
Pełny tekst źródłaAlam, Rabeya Binta, Md Hasive Ahmad, S. F. U. Farhad i Muhammad Rakibul Islam. "Significantly improved dielectric performance of bio-inspired gelatin/single-walled carbon nanotube nanocomposite". Journal of Applied Physics 131, nr 12 (28.03.2022): 124103. http://dx.doi.org/10.1063/5.0077896.
Pełny tekst źródłaDang, Yue-Mao, Ming-Sheng Zheng i Jun-Wei Zha. "Improvements of dielectric properties and energy storage performances in BaTiO3/PVDF nanocomposites by employing a thermal treatment process". Journal of Advanced Dielectrics 08, nr 06 (grudzień 2018): 1850043. http://dx.doi.org/10.1142/s2010135x18500431.
Pełny tekst źródłaNiaz, N. A., A. Shakoor, F. Hussain, M. Iqbal, N. R. Khalid, M. K. Saleem, N. Anwar i J. Ahmad. "Structural and electronic properties of PANI-ZnO-TiO2 nanocomposite". Journal of Ovonic Research 18, nr 5 (3.11.2022): 713–22. http://dx.doi.org/10.15251/jor.2022.185.713.
Pełny tekst źródłaNovruzova, A. A. "STRUCTURE AND ELECTROPHYSICAL PROPERTIES OF PVDF+PbS/CdS NANOCOMPOSITES". NNC RK Bulletin, nr 2 (17.10.2021): 53–56. http://dx.doi.org/10.52676/1729-7885-2021-2-53-56.
Pełny tekst źródłaMin, Daomin, Chenyu Yan, Rui Mi, Chao Ma, Yin Huang, Shengtao Li, Qingzhou Wu i Zhaoliang Xing. "Carrier Transport and Molecular Displacement Modulated dc Electrical Breakdown of Polypropylene Nanocomposites". Polymers 10, nr 11 (30.10.2018): 1207. http://dx.doi.org/10.3390/polym10111207.
Pełny tekst źródłaLiu, Tian, Weston Wood, Bin Li, Brooks Lively i Wei-Hong Zhong. "Electrical and dielectric sensitivities to thermal processes in carbon nanofiber/high-density polyethylene composites". Science and Engineering of Composite Materials 18, nr 1-2 (1.06.2011): 51–60. http://dx.doi.org/10.1515/secm.2011.007.
Pełny tekst źródłaKaur, Daljeet, Amardeep Bharti, Tripti Sharma i Charu Madhu. "Dielectric Properties of ZnO-Based Nanocomposites and Their Potential Applications". International Journal of Optics 2021 (22.07.2021): 1–20. http://dx.doi.org/10.1155/2021/9950202.
Pełny tekst źródłaHao, Y. N., K. Bi, S. O'Brien, X. X. Wang, J. Lombardi, F. Pearsall, W. L. Li, M. Lei, Y. Wu i L. T. Li. "Interface structure, precursor rheology and dielectric properties of BaTiO3/PVDF–hfp nanocomposite films prepared from colloidal perovskite nanoparticles". RSC Advances 7, nr 52 (2017): 32886–92. http://dx.doi.org/10.1039/c7ra03250a.
Pełny tekst źródłaYatsyshen, Valeriy, Irina Potapova i Vyacheslav Shipaev. "Polaritons in Nanocomposites of Metal Nanoparticles – Dielectric". NBI Technologies, nr 2 (październik 2019): 39–53. http://dx.doi.org/10.15688/nbit.jvolsu.2019.2.7.
Pełny tekst źródłaNOH, HYUN-JI, SUNG-PILL NAM, SUNG-GAP LEE, BYEONG-LIB AHN, WOO-SIK WON, HYOUNG-GWAN WOO i SANG-MAN PARK. "ELECTRICAL AND MECHANICAL CHARACTERISTICS OF EPOXY-NANOCLAY COMPOSITE". Modern Physics Letters B 23, nr 31n32 (30.12.2009): 3925–30. http://dx.doi.org/10.1142/s0217984909022010.
Pełny tekst źródłaAhangaran, Fatemeh, Ali Hassanzadeh, Sirous Nouri i Rasoul Esmaeely Neisiany. "Investigation of thermal and dielectric properties of Fe3O4/high-density polyethylene nanocomposites". Journal of Composite Materials 51, nr 28 (26.02.2017): 3923–29. http://dx.doi.org/10.1177/0021998317695419.
Pełny tekst źródłaCheng, Yujia, Guang Yu, Boyang Yu i Xiaohong Zhang. "The Research of Conductivity and Dielectric Properties of ZnO/LDPE Composites with Different Particles Size". Materials 13, nr 18 (17.09.2020): 4136. http://dx.doi.org/10.3390/ma13184136.
Pełny tekst źródłaWang, Shaojing, Peng Xu, Xiangyi Xu, Da Kang, Jie Chen, Zhe Li i Xingyi Huang. "Tailoring the Electrical Energy Storage Capability of Dielectric Polymer Nanocomposites via Engineering of the Host–Guest Interface by Phosphonic Acids". Molecules 27, nr 21 (25.10.2022): 7225. http://dx.doi.org/10.3390/molecules27217225.
Pełny tekst źródłaJeong, Jae, Hye Hwang, Dalsu Choi, Byung Ma, Jaehan Jung i Mincheol Chang. "Hybrid Polymer/Metal Oxide Thin Films for High Performance, Flexible Transistors". Micromachines 11, nr 3 (4.03.2020): 264. http://dx.doi.org/10.3390/mi11030264.
Pełny tekst źródłaSagar, Rohan, Akash Kumar, Rajesh Kumar Raghav i M. S. Gaur. "Investigations on Piezoelectric, Dielectric and Mechanical Properties of PVDF/PVC/GO Nanocomposites". ECS Journal of Solid State Science and Technology 12, nr 8 (1.08.2023): 083011. http://dx.doi.org/10.1149/2162-8777/aceeb4.
Pełny tekst źródłaShao, Jiang, Le Zhou, Yuqi Chen, Xue Liu i Mingbo Ji. "Model-Based Dielectric Constant Estimation of Polymeric Nanocomposite". Polymers 14, nr 6 (11.03.2022): 1121. http://dx.doi.org/10.3390/polym14061121.
Pełny tekst źródłaMohaimeed, Ameen alwan. "The Study the Influence of TiO2-Nanoparticles Doped in Polyvinyl Alcohol by Measuring Optical Properties of PVA Films". Iraqi Journal of Nanotechnology, nr 3 (14.10.2022): 59–70. http://dx.doi.org/10.47758/ijn.vi3.62.
Pełny tekst źródłaKamarudin, Siti Noorhazirah, Kwan Yiew Lau, Chee Wei Tan i Kuan Yong Ching. "The Role of Silicon-Based Nanofillers and Polymer Crystallization on the Breakdown Behaviors of Polyethylene Blend Nanocomposites". Nano 15, nr 08 (sierpień 2020): 2050097. http://dx.doi.org/10.1142/s1793292020500976.
Pełny tekst źródłaYang, Dandan, Haiping Xu i Wei Yu. "Comparative study on the dielectric properties of three polyvinylidene fluoride nanocomposites incorporated with carbon filler". Journal of Thermoplastic Composite Materials 31, nr 8 (5.10.2017): 1102–11. http://dx.doi.org/10.1177/0892705717734601.
Pełny tekst źródłaStephen, Ranimol, Sabu Thomas, K. V. S. N. Raju, Siby Varghese, Kuruvilla Joseph i Zachariah Oommen. "Dynamic Mechanical and Dielectric Properties of Nanocomposites of Natural Rubber (NR), Carboxylated Styrene Butadiene Rubber (XSBR) Latices and their Blends". Rubber Chemistry and Technology 80, nr 4 (1.09.2007): 672–89. http://dx.doi.org/10.5254/1.3548187.
Pełny tekst źródłaProkhorov, Evgen, Gabriel Luna-Bárcenas, José Martín Yáñez Limón, Alejandro Gómez Sánchez i Yuriy Kovalenko. "Chitosan-ZnO Nanocomposites Assessed by Dielectric, Mechanical, and Piezoelectric Properties". Polymers 12, nr 9 (1.09.2020): 1991. http://dx.doi.org/10.3390/polym12091991.
Pełny tekst źródłaTawade, Bhausaheb V., Ikeoluwa E. Apata, Nihar Pradhan, Alamgir Karim i Dharmaraj Raghavan. "Recent Advances in the Synthesis of Polymer-Grafted Low-K and High-K Nanoparticles for Dielectric and Electronic Applications". Molecules 26, nr 10 (15.05.2021): 2942. http://dx.doi.org/10.3390/molecules26102942.
Pełny tekst źródłaSingha, Santanu, i M. Thomas. "Dielectric properties of epoxy nanocomposites". IEEE Transactions on Dielectrics and Electrical Insulation 15, nr 1 (2008): 12–23. http://dx.doi.org/10.1109/t-dei.2008.4446732.
Pełny tekst źródłaTanaka, T. "Dielectric nanocomposites with insulating properties". IEEE Transactions on Dielectrics and Electrical Insulation 12, nr 5 (październik 2005): 914–28. http://dx.doi.org/10.1109/tdei.2005.1522186.
Pełny tekst źródłaWong, Shing-Chung, Erwin M. Wouterson i Eric M. Sutherland. "Dielectric properties of graphite nanocomposites". Journal of Vinyl and Additive Technology 12, nr 3 (2006): 127–30. http://dx.doi.org/10.1002/vnl.20081.
Pełny tekst źródłaShimoga, Ganesh, i Sang-Youn Kim. "High-k Polymer Nanocomposite Materials for Technological Applications". Applied Sciences 10, nr 12 (20.06.2020): 4249. http://dx.doi.org/10.3390/app10124249.
Pełny tekst źródłaZazoum, Bouchaib. "Machine Learning Approach to Predict Dielectric Permittivity of PE/TiO2 Nanocomposites". Materials Science Forum 998 (czerwiec 2020): 239–45. http://dx.doi.org/10.4028/www.scientific.net/msf.998.239.
Pełny tekst źródłaZazoum, B., E. David i A. D. Ngô. "LDPE/HDPE/Clay Nanocomposites: Effects of Compatibilizer on the Structure and Dielectric Response". Journal of Nanotechnology 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/138457.
Pełny tekst źródłaBalachandar, V., J. Brijitta, K. Viswanathan i R. Sampathkumar. "Investigations on the Structural, Optical and Dielectric Properties of Ball-Milled ZnO–Fe2O3 Nanocomposites". International Journal of Nanoscience 19, nr 04 (14.02.2020): 1950034. http://dx.doi.org/10.1142/s0219581x19500340.
Pełny tekst źródłaRamazanov, M. A., A. M. Rahimli i F. V. Hajiyeva. "The influence of titanium dioxide (TiO2) nanoparticles on the structure, optical and dielectric properties of polyvinyl chloride (PVC)". Modern Physics Letters B 34, nr 28 (10.06.2020): 2050310. http://dx.doi.org/10.1142/s0217984920503108.
Pełny tekst źródłaOsipov, Mikhail A., Alexey S. Merekalov i Alexander A. Ezhov. "Molecular-Theory of High Frequency Dielectric Susceptibility of Nematic Nanocomposites". Crystals 10, nr 11 (26.10.2020): 970. http://dx.doi.org/10.3390/cryst10110970.
Pełny tekst źródłaThabet, Ahmed, i Youssef Mobarak. "Experimental Dielectric Measurements for Cost-fewer Polyvinyl Chloride Nanocomposites". International Journal of Electrical and Computer Engineering (IJECE) 5, nr 1 (1.02.2015): 13. http://dx.doi.org/10.11591/ijece.v5i1.pp13-22.
Pełny tekst źródłaArief, Yanuar Z., Mohd Izairi Ismail, Mohamad Zul Hilmey Makmud, Aulia, Zuraimy Adzis i Nor Asiah Muhamad. "Partial Discharge Characteristics of Natural Rubber Blends with Inorganic Nanofiller as Electrical Insulating Material". Applied Mechanics and Materials 284-287 (styczeń 2013): 188–92. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.188.
Pełny tekst źródłaSharma, Anshu, S. P. Nehra, Y. K. Vijay i I. P. Jain. "Impact of Magnetically Aligned CNT/PC Nanocomposites for Hydrogen Gas Separation Applications". MRS Advances 1, nr 42 (2016): 2873–80. http://dx.doi.org/10.1557/adv.2016.376.
Pełny tekst źródłaHassan, Dalal, i Ahmed Hashim Ah-yasari. "Fabrication and studying the dielectric properties of (polystyrene-copper oxide) nanocomposites for piezoelectric application". Bulletin of Electrical Engineering and Informatics 8, nr 1 (1.03.2019): 52–57. http://dx.doi.org/10.11591/eei.v8i1.1019.
Pełny tekst źródłaNi, Xia, Ji Ma, Jiangong Li, Juanjuan Huang, Dongmao Jiao i Zhibin Lu. "Structure and Microwave Characteristics of Co/TiO2 Nanocomposites Prepared by Ball Milling". Journal of Nanoscience and Nanotechnology 8, nr 9 (1.09.2008): 4470–76. http://dx.doi.org/10.1166/jnn.2008.293.
Pełny tekst źródłaVanin, A. I., Yu A. Kumzerov, V. G. Solov’ev, S. D. Khanin, S. E. Gango, M. S. Ivanova, M. M. Prokhorenko, S. V. Trifonov, A. V. Cvetkov i M. V. Yanikov. "Electrical and Optical Properties of Nanocomposites Fabricated by the Introduction of Iodine in Porous Dielectric Matrices". Glass Physics and Chemistry 47, nr 3 (maj 2021): 229–34. http://dx.doi.org/10.1134/s1087659621030123.
Pełny tekst źródłaLin, Jia Qi, Ying Liu, Wen Long Yang i Hui Lin. "Investigation on the Morphology and Dielectric Properties of PI/SiO2 Nanocomposite Films". Advanced Materials Research 1015 (sierpień 2014): 250–54. http://dx.doi.org/10.4028/www.scientific.net/amr.1015.250.
Pełny tekst źródłaShivashankar, H., Kevin Amith Mathias, Pavankumar R. Sondar, M. H. Shrishail i S. M. Kulkarni. "Study on low-frequency dielectric behavior of the carbon black/polymer nanocomposite". Journal of Materials Science: Materials in Electronics 32, nr 24 (31.10.2021): 28674–86. http://dx.doi.org/10.1007/s10854-021-07242-1.
Pełny tekst źródłaHassan, Dalal, i Ahmed Hashim. "Synthesis of (Poly-methyl Methacrylate-lead Oxide) Nanocomposites and Studying their A.C Electrical Properties for Piezoelectric Applications". Bulletin of Electrical Engineering and Informatics 7, nr 4 (1.12.2018): 547–51. http://dx.doi.org/10.11591/eei.v7i4.969.
Pełny tekst źródłaPeng, Cheng, Yefeng Feng i Jianbing Hu. "Enhancing High-Frequency Dielectric Properties of Beta-SiC Filled Nanocomposites from Synergy between Percolation and Polarization". Materials 11, nr 9 (13.09.2018): 1699. http://dx.doi.org/10.3390/ma11091699.
Pełny tekst źródłaYou, Yong, Ling Tu, Yajie Wang, Lifen Tong, Renbo Wei i Xiaobo Liu. "Achieving Secondary Dispersion of Modified Nanoparticles by Hot-Stretching to Enhance Dielectric and Mechanical Properties of Polyarylene Ether Nitrile Composites". Nanomaterials 9, nr 7 (12.07.2019): 1006. http://dx.doi.org/10.3390/nano9071006.
Pełny tekst źródłaWu, Minjie, Linfeng Lu, Linhai Yu, Xiaoyan Yu, Kimiyoshi Naito, Xiongwei Qu i Qingxin Zhang. "Preparation and Characterization of Epoxy/Alumina Nanocomposites". Journal of Nanoscience and Nanotechnology 20, nr 5 (1.05.2020): 2964–70. http://dx.doi.org/10.1166/jnn.2020.17460.
Pełny tekst źródłaHashim, A., i A. Hadi. "Novel Pressure Sensors Made from Nanocomposites (Biodegradable Polymers–Metal Oxide Nanoparticles): Fabrication and Characterization". Ukrainian Journal of Physics 63, nr 8 (7.09.2018): 754. http://dx.doi.org/10.15407/ujpe63.8.754.
Pełny tekst źródła