Gotowa bibliografia na temat „Dielectric polymers”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Dielectric polymers”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Dielectric polymers"
Dou, Lvye, Yuan-Hua Lin i Ce-Wen Nan. "An Overview of Linear Dielectric Polymers and Their Nanocomposites for Energy Storage". Molecules 26, nr 20 (12.10.2021): 6148. http://dx.doi.org/10.3390/molecules26206148.
Pełny tekst źródłaChoi, Junhwan, i Hocheon Yoo. "Combination of Polymer Gate Dielectric and Two-Dimensional Semiconductor for Emerging Field-Effect Transistors". Polymers 15, nr 6 (10.03.2023): 1395. http://dx.doi.org/10.3390/polym15061395.
Pełny tekst źródłaLiu, Di-Fan, Qi-Kun Feng, Yong-Xin Zhang, Shao-Long Zhong i Zhi-Min Dang. "Prediction of high-temperature polymer dielectrics using a Bayesian molecular design model". Journal of Applied Physics 132, nr 1 (7.07.2022): 014901. http://dx.doi.org/10.1063/5.0094746.
Pełny tekst źródłaYang, Zhijie, Dong Yue, Yuanhang Yao, Jialong Li, Qingguo Chi, Qingguo Chen, Daomin Min i Yu Feng. "Energy Storage Application of All-Organic Polymer Dielectrics: A Review". Polymers 14, nr 6 (14.03.2022): 1160. http://dx.doi.org/10.3390/polym14061160.
Pełny tekst źródłaKatunin, Andrzej, i Katarzyna Krukiewicz. "Electrical percolation in composites of conducting polymers and dielectrics". Journal of Polymer Engineering 35, nr 8 (1.10.2015): 731–41. http://dx.doi.org/10.1515/polyeng-2014-0206.
Pełny tekst źródłaLi, Rui, Jian Zhong Pei, Yan Wei Li, Xin Shi i Qun Le Du. "Preparation, Morphology and Dielectric Properties of Polyamide-6/Poly(Vinylidene Fluoride) Blends". Advanced Materials Research 496 (marzec 2012): 263–67. http://dx.doi.org/10.4028/www.scientific.net/amr.496.263.
Pełny tekst źródłaЗакревский, В. А., В. А. Пахотин i Н. Т. Сударь. "Долговечность полимеров в переменном электрическом поле". Журнал технической физики 90, nr 2 (2020): 251. http://dx.doi.org/10.21883/jtf.2020.02.48818.224-19.
Pełny tekst źródłaBIJWE, JAYASHREE, i NEELAM PHOUGAT. "Dielectric Properties of Iron Phthalocyanine Compounds". Journal of Porphyrins and Phthalocyanines 02, nr 03 (maj 1998): 223–30. http://dx.doi.org/10.1002/(sici)1099-1409(199805/06)2:3<223::aid-jpp69>3.0.co;2-a.
Pełny tekst źródłaAli, Amjad, Mirza Nadeem Ahmad, Tajamal Hussain, Ahmad Naveed, Tariq Aziz, Mobashar Hassan i Li Guo. "Materials Innovations in 2D-filler Reinforced Dielectric Polymer Composites". Materials Innovations 02, nr 02 (2022): 47–66. http://dx.doi.org/10.54738/mi.2022.2202.
Pełny tekst źródłaLi, He, Yao Zhou, Yang Liu, Li Li, Yi Liu i Qing Wang. "Dielectric polymers for high-temperature capacitive energy storage". Chemical Society Reviews 50, nr 11 (2021): 6369–400. http://dx.doi.org/10.1039/d0cs00765j.
Pełny tekst źródłaRozprawy doktorskie na temat "Dielectric polymers"
Akins, Robert Benjamin. "Dielectric investigation of double glass transitions in polymers". Case Western Reserve University School of Graduate Studies / OhioLINK, 1991. http://rave.ohiolink.edu/etdc/view?acc_num=case1055878455.
Pełny tekst źródłaZhong, Zhengzhong. "Dielectric relaxations in side-chain liquid crystalline polymers". Case Western Reserve University School of Graduate Studies / OhioLINK, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=case1060624225.
Pełny tekst źródłaGupta, Sahil. "Structure-Property Relationships in Polymers for Dielectric Capacitors". University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1395682393.
Pełny tekst źródłaGrove, Nicole R. "Characterization of functionalized polynorbornenes as interlevel dielectrics". Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/11204.
Pełny tekst źródłaRiedel, Clément. "Dielectric and mechanical properties of polymers at macro and nanoscale". Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20073.
Pełny tekst źródłaThe aim of this thesis was first to understand the physical theories that describe the dynamics of linear polymers at the macroscopic scale. Rouse and the reptational tube theory describe the large scale dynamics of unentangled and entangled polymers respectively. Using Broadband Dielectric Spectroscopy (BDS) and rheology we have studied the different transition between these two regimes. Effects of entanglement on dielectric spectra will be discussed (Rheologica Acta. 49(5):507-512). Avoiding the segmental relaxation contribution and introducing a distribution in the molecular weight we have been able to perform a comparison of the Rouse model with experiment dielectric and rheological data (Macromolecules 42(21): 8492-8499) Then we have developed EFM-based methods in order to study the local dynamics. Using the numerical simulation of the Equivalent Charge Method, the value of the static dielectric permittivity has been quantified from the measurement of the force gradient created by a VDC potential between a tip and a grounded dielectric (Journal of Applied Physics 106(2):024315). This method allows a quantitative mapping of dielectric properties with a 40 nm spatial resolution and is therefore suitable for the study of nano-defined domains (Physical Review E 81(1): 010801). The electrical phase lags in the 2ω components of the force or force gradient created by VAC voltage, ΔΦ2ω, are related with dielectric losses. Measuring the frequency dependence of ΔΦ2ω Crieder et al (Applied Physics Letters 91(1):013102) have shown that the dynamics at the near free surface of polymer films is faster than the one in bulk. We have used this method in order to visualize the activation of the segmental relaxation with temperature and frequency (Applied Physics Letters 96(21): 213110). All this measurements can be achieved using standard Atomic Force Microscope (and a lock-in) for VAC measurements
Nass, Kirk A. "Dielectric thermal analysis of polymeric matrices /". Thesis, Connect to this title online; UW restricted, 1989. http://hdl.handle.net/1773/9897.
Pełny tekst źródłaWarner, Nathaniel A. "Investigation of the Effect of Particle Size and Particle Loading on Thermal Conductivity and Dielectric Strength of Thermoset Polymers". Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc849629/.
Pełny tekst źródłaEusner, Thor. "Determining the Preston constants of low-dielectric-constant polymers". Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/36308.
Pełny tekst źródłaIncludes bibliographical references (leaf 30).
An important step in the manufacture of integrated circuits (ICs) is the Chemical Mechanical Polishing (CMP) process. In order to effectively use CMP, the removal rates of the materials used in ICs must be known. The removal rate of a given material by CMP can be determined once its Preston constant is known. The objectives of this work were to develop a method to determine the Preston constants and to measure the Preston constants of four low-dielectric-constant (low-k) polymers, labeled A, B, C, and D, and Cu. A weight-loss method, which measures the weight difference between the initial wafer and the polished wafer, provided repeatable results. The Preston constants ranged from 1.01 to 5.96 x10-'3 m2/N. The variation in measurements of the Preston constant ranged from 16% to 31%. The Preston constant of Cu was found to be 1.60 + 0.50 x10-13 m2/N. Of the four polymers, Polymer A had the smallest Preston constant, 1.01 i- 0.30 x10-13 m2/N. It was also determined that there is an approximate inverse linear relationship between the Preston constant of the four low-k polymers and their Young's moduli of elasticity. An approximate inverse linear relationship between the Preston constant of the four low-k polymers and the hardness was also observed.
by Thor Eusner.
S.B.
Xiao, Zhang. "PROBING POLYMER DYNAMICS USING HIGH THROUGHPUT BROADBAND DIELECTRIC SPECTROSCOPY". University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1533127319642101.
Pełny tekst źródłaMaistros, G. M. "Dielectric monitoring during the cure of epoxy resin blends". Thesis, Cranfield University, 1991. http://dspace.lib.cranfield.ac.uk/handle/1826/10403.
Pełny tekst źródłaKsiążki na temat "Dielectric polymers"
Kremer, Friedrich. Broadband Dielectric Spectroscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.
Znajdź pełny tekst źródłaE, Read B., i Williams G. Ph D, red. Anelastic and dielectric effects in polymeric solids. New York: Dover Publications, 1991.
Znajdź pełny tekst źródła1953-, Runt James P., i Fitzgerald John J, red. Dielectric spectroscopy of polymeric materials: Fundamentals and applications. Washington, DC: American Chemical Society, 1997.
Znajdź pełny tekst źródłaUsmanov, S. M. Numerical methods of solving ill-posed problems of dielectric spectrometry. Hauppauge, N.Y: Nova Science Publishers, 2002.
Znajdź pełny tekst źródłaUsmanov, S. M. Numerical methods of solving ill-posed problems of dielectric spectrometry. Hauppauge, NY: Nova Science, 2003.
Znajdź pełny tekst źródłaBorst, Christopher L., William N. Gill i Ronald J. Gutmann. Chemical-Mechanical Polishing of Low Dielectric Constant Polymers and Organosilicate Glasses. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-1165-6.
Pełny tekst źródłaJames, Havriliak Stephen, red. Dielectric and mechanical relaxation in materials: Analysis, interpretation, and application to polymers. Munich: Hanser Publishers, 1997.
Znajdź pełny tekst źródłaN, Hammoud A., i United States. National Aeronautics and Space Administration., red. High temperature dielectric properties of Apical, Kapton, Peek, Teflon AF, and Upilex polymers. [Washington, DC]: National Aeronautics and Space Administration, 1992.
Znajdź pełny tekst źródłaservice), ScienceDirect (Online, red. Dielectric elastomers as electromechanical transducers: Fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology. Amsterdam: Elsevier, 2008.
Znajdź pełny tekst źródłaBoersma, Arjen. A dielectric study on the microstructure in polymers and blends: Orientation crystallization and interfacial phenomena in a liquid crystalline polymer and its blends. Delft: Delft University, 1998.
Znajdź pełny tekst źródłaCzęści książek na temat "Dielectric polymers"
Billah, Shah Mohammed Reduwan. "Dielectric Polymers". W Polymers and Polymeric Composites: A Reference Series, 241–88. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-95987-0_8.
Pełny tekst źródłaBillah, Shah Mohammed Reduwan. "Dielectric Polymers". W Polymers and Polymeric Composites: A Reference Series, 1–49. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92067-2_8-1.
Pełny tekst źródłaGooch, Jan W. "Dielectric". W Encyclopedic Dictionary of Polymers, 212. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_3579.
Pełny tekst źródłaGooch, Jan W. "Dielectric Absorption". W Encyclopedic Dictionary of Polymers, 212–13. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_3580.
Pełny tekst źródłaGooch, Jan W. "Dielectric Constant". W Encyclopedic Dictionary of Polymers, 213. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_3582.
Pełny tekst źródłaGooch, Jan W. "Dielectric Heating". W Encyclopedic Dictionary of Polymers, 213. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_3584.
Pełny tekst źródłaGooch, Jan W. "Dielectric Loss". W Encyclopedic Dictionary of Polymers, 213. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_3585.
Pełny tekst źródłaGooch, Jan W. "Dielectric Strength". W Encyclopedic Dictionary of Polymers, 214. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_3589.
Pełny tekst źródłaGooch, Jan W. "Loss Dielectric". W Encyclopedic Dictionary of Polymers, 434. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_7035.
Pełny tekst źródłaGooch, Jan W. "Dielectric Constant". W Encyclopedic Dictionary of Polymers, 887. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_13555.
Pełny tekst źródłaStreszczenia konferencji na temat "Dielectric polymers"
Grebel, H. "Artificial dielectric polymeric waveguides". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.ms4.
Pełny tekst źródłaTanaka, Satomi, Shinjiro Machida, Kazuyuki Horie i Takashi Yamashita. "Low-Temperature Structural Relaxation in Polymers Probed by PHB". W Spectral Hole-Burning and Related Spectroscopies: Science and Applications. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/shbs.1994.wd35.
Pełny tekst źródłaZhang, Tian, Yash Thakur i Q. M. Zhang. "Doped dielectric polymers with low dielectric constant nanofillers". W 2017 IEEE Conference on Electrical Insulation and Dielectric Phenomenon (CEIDP). IEEE, 2017. http://dx.doi.org/10.1109/ceidp.2017.8257447.
Pełny tekst źródłaOhki, Y., i N. Hirai. "Dielectric Properties of Biodegradable Polymers". W 2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena. IEEE, 2006. http://dx.doi.org/10.1109/ceidp.2006.312020.
Pełny tekst źródłaGaur, Mulayam Singh, i Pankaj Kumar Yadav. "Dielectric relaxation in nanocrystalline polymers". W 2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM). IEEE, 2015. http://dx.doi.org/10.1109/icpadm.2015.7295408.
Pełny tekst źródłaLassen, B., M. Jaffari, C. Melvad, G. R. Kristjánsdóttir i R. Jones. "Hysteresis in dielectric electroactive polymers". W Second International Conference on Smart Materials and Nanotechnology in Engineering, redaktorzy Jinsong Leng, Anand K. Asundi i Wolfgang Ecke. SPIE, 2009. http://dx.doi.org/10.1117/12.843192.
Pełny tekst źródłaLevenson, R., J. Liang, C. Rossier, M. Van Beylen, C. Samyn, F. Foll, Rousseau i J. Zyss. "Stability-Efficiency Trade-Off in Non-Linear Optical Polymers". W Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/otfa.1993.wd.6.
Pełny tekst źródłaOzsecen, Muzaffer Y., Mark Sivak i Constantinos Mavroidis. "Haptic interfaces using dielectric electroactive polymers". W SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, redaktor Masayoshi Tomizuka. SPIE, 2010. http://dx.doi.org/10.1117/12.847244.
Pełny tekst źródłaHendriksen, Berend, Mart B. J. Diemeer, Frank M. Suyten, Remi Meyrueix, Ben L. Feringa i Jos B. Hulshof. "Dielectric characterization of nonlinear optical polymers". W SPIE's 1993 International Symposium on Optics, Imaging, and Instrumentation, redaktor Gustaaf R. Moehlmann. SPIE, 1993. http://dx.doi.org/10.1117/12.165259.
Pełny tekst źródłaPei, Qibing. "Making stretchy dielectric, conductive, and semiconductor polymers". W Electroactive Polymer Actuators and Devices (EAPAD) XXIII, redaktorzy John D. Madden, Iain A. Anderson i Herbert R. Shea. SPIE, 2021. http://dx.doi.org/10.1117/12.2584462.
Pełny tekst źródłaRaporty organizacyjne na temat "Dielectric polymers"
Rajca, Andrzej. Organic Polymers with Magneto-Dielectric Properties. Fort Belvoir, VA: Defense Technical Information Center, marzec 2007. http://dx.doi.org/10.21236/ada467781.
Pełny tekst źródłaJones, Robert J., i Ward F. Wright. High Temperature Polymer Dielectric Film Insulation. Fort Belvoir, VA: Defense Technical Information Center, luty 1992. http://dx.doi.org/10.21236/ada255243.
Pełny tekst źródłaMopsik, Frederick I., i Brian Dickens. The measurement of the dielectric constant of polymeric films at high fields. Gaithersburg, MD: National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.4910.
Pełny tekst źródłaObrzut, Jan, C. K. Chiang, R. Popielarz i R. Nozaki. Evaluation of dielectric properties of polymer thin-film materials for application in embedded capacitance. Gaithersburg, MD: National Institute of Standards and Technology, 2000. http://dx.doi.org/10.6028/nist.ir.6537.
Pełny tekst źródłaChaffee, Kevin P., i Patrick T. Mather. A Preliminary Investigation of the Interfacial and Dielectric Properties of Polyhedral Oligomeric Silsesquioxane Polymer Blends. Fort Belvoir, VA: Defense Technical Information Center, listopad 1998. http://dx.doi.org/10.21236/ada362369.
Pełny tekst źródłaVenkat, Narayanan, Victor K. McNier, Bang-Hung Tsao, Thuy D. Dang, Jennifer N. DeCerbo i Jeffery T. Stricker. High Performance Polymer Film Dielectrics for Air Force Wide-Temperature Power Electronics Applications (Preprint). Fort Belvoir, VA: Defense Technical Information Center, luty 2009. http://dx.doi.org/10.21236/ada525306.
Pełny tekst źródłaEager, G. S. Jr, G. W. Seman i B. Fryszczyn. Determination of threshold and maximum operating electric stresses for selected high voltage insulations: Investigation of aged polymeric dielectric cable. Final report. Office of Scientific and Technical Information (OSTI), listopad 1995. http://dx.doi.org/10.2172/212744.
Pełny tekst źródła