Gotowa bibliografia na temat „Dielectric Constant”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Dielectric Constant”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Dielectric Constant"
Singh, Rajenda, i Richard K. Ulrich. "High and Low Dielectric Constant Materials". Electrochemical Society Interface 8, nr 2 (1.06.1999): 26–30. http://dx.doi.org/10.1149/2.f06992if.
Pełny tekst źródłaBiju, Anjitha, Maria Joseph, V. N. Archana, Navya Joseph i M. R. Anantharaman. "High Dielectric Constant Liquid Dielectrics Based on Magnetic Nanofluids". Journal of Nanofluids 12, nr 4 (1.05.2023): 1141–50. http://dx.doi.org/10.1166/jon.2023.1973.
Pełny tekst źródłaKalyane, Sangshetty. "Dielectric Constant Study of Polyaniline – CeO2 Composites". Indian Journal of Applied Research 3, nr 6 (1.10.2011): 1–2. http://dx.doi.org/10.15373/2249555x/june2013/181.
Pełny tekst źródłaLing, H. C., M. F. Yan i W. W. Rhodes. "High dielectric constant and small temperature coefficient bismuth-based dielectric compositions". Journal of Materials Research 5, nr 8 (sierpień 1990): 1752–62. http://dx.doi.org/10.1557/jmr.1990.1752.
Pełny tekst źródłaMital, Prem Bhushan. "An Experimental Study of Curved Rectangular Microstrip Antenna in Simulated Plasma Medium". Active and Passive Electronic Components 19, nr 2 (1996): 119–23. http://dx.doi.org/10.1155/1996/26187.
Pełny tekst źródłaEndo, Kazuhiko. "Fluorinated Amorphous Carbon as a Low-Dielectric-Constant Interlayer Dielectric". MRS Bulletin 22, nr 10 (październik 1997): 55–58. http://dx.doi.org/10.1557/s0883769400034217.
Pełny tekst źródłaBaklanov, Mikhail R., i Karen Maex. "Porous low dielectric constant materials for microelectronics". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, nr 1838 (29.11.2005): 201–15. http://dx.doi.org/10.1098/rsta.2005.1679.
Pełny tekst źródłaGhule, B., i M. Laad. "Polymer Composites with Improved Dielectric Properties: A Review". Ukrainian Journal of Physics 66, nr 2 (4.03.2021): 166. http://dx.doi.org/10.15407/ujpe66.2.166.
Pełny tekst źródłaMandrić Radivojević, Vanja, Slavko Rupčić, Mario Srnović i Goran Benšić. "Measuring the Dielectric Constant of Paper Using a Parallel Plate Capacitor". International journal of electrical and computer engineering systems 9, nr 1 (2018): 1–10. http://dx.doi.org/10.32985/ijeces.9.1.1.
Pełny tekst źródłaGuo, Dong, Zhi Yuan Ling i Xing Hu. "Low Temperature Sintering Ba3Ti5Nb6O28 Ceramics with Tunable Temperature Coefficient of Dielectric Constant". Key Engineering Materials 368-372 (luty 2008): 170–72. http://dx.doi.org/10.4028/www.scientific.net/kem.368-372.170.
Pełny tekst źródłaRozprawy doktorskie na temat "Dielectric Constant"
Fromille, Samuel S. IV. "Novel Concept for High Dielectric Constant Composite Electrolyte Dielectrics". Thesis, Monterey, California. Naval Postgraduate School, 2013. http://hdl.handle.net/10945/53408.
Pełny tekst źródłaThis research was part of an ongoing program studying the concept of multi-material dielectrics (MMD) with dielectric constants much higher than homogenous materials. MMD described in this study have dielectric constants six orders of magnitude greater than the best single materials. This is achieved by mixing conductive particles with an insulating surface layer into a composite matrix phase composed of high surface area ceramic powder and aqueous electrolyte. Specifically examined in this study was micron-scale nickel powder treated in hydrogen peroxide (H2O2) loaded into high surface area alumina powder and aqueous boric acid solution. This new class of dielectric, composite electrolyte dielectrics (CED), is employed in an electrostatic capacitor configuration and demonstrated dielectric constant of order 10 [raised to the 10th power] at approximately 1 Volt. Additionally, it is demonstrated that treated nickel can be loaded in high volume fractions in the CED configuration. Prior studies of composite capacitors indicated a general limitation due to shorting. This results from the onset of percolation due to excess loading of conductive phases. Insulated particles described herein are successfully loaded up to 40% by volume, far above typical percolation thresholds. Simple models are presented to explain results.
Lieutenant, United States Navy
Eusner, Thor. "Determining the Preston constants of low-dielectric-constant polymers". Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/36308.
Pełny tekst źródłaIncludes bibliographical references (leaf 30).
An important step in the manufacture of integrated circuits (ICs) is the Chemical Mechanical Polishing (CMP) process. In order to effectively use CMP, the removal rates of the materials used in ICs must be known. The removal rate of a given material by CMP can be determined once its Preston constant is known. The objectives of this work were to develop a method to determine the Preston constants and to measure the Preston constants of four low-dielectric-constant (low-k) polymers, labeled A, B, C, and D, and Cu. A weight-loss method, which measures the weight difference between the initial wafer and the polished wafer, provided repeatable results. The Preston constants ranged from 1.01 to 5.96 x10-'3 m2/N. The variation in measurements of the Preston constant ranged from 16% to 31%. The Preston constant of Cu was found to be 1.60 + 0.50 x10-13 m2/N. Of the four polymers, Polymer A had the smallest Preston constant, 1.01 i- 0.30 x10-13 m2/N. It was also determined that there is an approximate inverse linear relationship between the Preston constant of the four low-k polymers and their Young's moduli of elasticity. An approximate inverse linear relationship between the Preston constant of the four low-k polymers and the hardness was also observed.
by Thor Eusner.
S.B.
Long, Ernest Edward. "Electrochemistry in low dielectric constant media". Thesis, University of Liverpool, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316974.
Pełny tekst źródłaCho, Taiheui. "Anisotropy of low dielectric constant materials and reliability of Cu/low-k interconnects /". Digital version accessible at:, 2000. http://wwwlib.umi.com/cr/utexas/main.
Pełny tekst źródłaBERNAL, JOSÉ IGNACIO MARULANDA. "MICROWAVE DEVICES USING HIGH DIELECTRIC CONSTANT FILMS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2010. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=17115@1.
Pełny tekst źródłaA crescente demanda por dispositivos portáveis de tamanho e peso cada vez mais reduzidos vem estimulando a busca por materiais de alta constante dielétrica e baixas perdas na faixa de freqüência de microondas capazes de permitir a integração e miniaturização de circuitos. No presente trabalho foi realizado um estudo teórico e experimental sobre a utilização de filmes de alta constante dielétrica na fabricação de dispositivos passivos de microondas de tamanhos reduzidos. Foi feita uma análise no domínio da freqüência sobre a influência desses filmes nas características de diferentes configurações de linhas de transmissão planares com múltiplas camadas dielétricas. A partir dessa análise, foi escolhida a configuração, denominada aqui de QCPW (Quase-Coplanar Waveguide), que permite a realização prática de estruturas com diversos valores de impedância utilizando dimensões transversais confortáveis. Filmes espessos de compostos de titanato de cálcio e de titanato de magnésio depositados pelo método de screen-printing e filmes finos de titanato de estrôncio por RF Magnetron Sputtering foram fabricados e caracterizados. O método do ressoador linear CPW e da linha de transmissão CPW foram empregados para determinar o valor da constante dielétrica e da tangente de perdas desses filmes na faixa de freqüência de microondas e à temperatura ambiente. O método do ressoador linear CPW foi adaptado e aperfeiçoado para fornecer resultados satisfatórios para o caso dos filmes finos. Finalmente, foram projetados, analisados e fabricados, pela primeira vez, transformadores de impedância em linhas de transmissão (TLT) de tamanho reduzido e com resposta banda larga baseados na configuração QCPW utilizando filmes de alta constante dielétrica.
The growing demand for portable devices with more reduced size and weight has stimulated the search for materials with high dielectric constant and low losses in the microwave frequency range allowing circuit integration and miniaturization. In this work, a theoretical and experimental study of the use of high dielectric constant films in the fabrication of microwave passive devices with reduced sizes has been made. A frequency domain analysis of the influence of these films on the characteristics of different configurations of multilayer transmission lines has been done. From this analysis, a configuration, called here as QCPW (Quasi-Coplanar Waveguide), that allows a practical implementation of structures with several values of impedance using comfortable transversal dimensions was chosen. Composite thick films of calcium titanate and magnesium titanate deposited by screen-printing and thin films of strontium titanate deposited by RF Magnetron Sputtering have been elaborated and characterized. CPW linear resonator method and CPW transmission line have been used to determinate the value of the dielectric constant and loss tangent of these films in the microwave frequency range at room temperature. The CPW linear resonator method was adapted and improved in order to provide satisfactory results for the case of thin films. Finally, for the first time, impedance transmission line transformers (TLT) with reduced size and wide-band response, based on the QCPW configuration using high dielectric constant films have been designed, analyzed, and fabricated.
Braganza, Clinton Ignatuis. "High Dielectric Constant Materials Containing Liquid Crystals". Kent State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=kent1248065159.
Pełny tekst źródłaMercer, Sean R. "Online microwave measurement of complex dielectric constant". Doctoral thesis, University of Cape Town, 1990. http://hdl.handle.net/11427/8342.
Pełny tekst źródłaThis dissertation examines the problem of on-line measurement of complex dielectric constant for the purpose of dielectric discrimination or product evaluation using microwave techniques. Various methods of signal/sample interaction were studied and consideration was given to the problem of sorting irregularly shaped discrete samples. The use of microwave transmission and reflection measurements was evaluated. The signal reflection methods were deemed to be best suited to applications with constant geometry feed presentation ( ie. a continuous, homogeneous product stream with little variation in surface geometry).
Dhanapala, Hembathanthirige Yasas. "Dielectric Constant Measurements Using Atomic Force Microscopy System". Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1347907325.
Pełny tekst źródłaTanner, Carey Marie. "Engineering high dielectric constant materials on silicon carbide". Diss., Restricted to subscribing institutions, 2007. http://proquest.umi.com/pqdweb?did=1459913391&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Pełny tekst źródłaShan, Xiaobing Cheng Zhongyang. "High dielectric constant 0-3 ceramic-polymer composites". Auburn, Ala, 2009. http://hdl.handle.net/10415/1820.
Pełny tekst źródłaKsiążki na temat "Dielectric Constant"
Fröhlich, H. Theory of dielectrics: Dielectric constant and dielectric loss. Wyd. 2. Oxford: Clarendon, 1986.
Znajdź pełny tekst źródłaFröhlich, H. Theory of dielectrics: Dielectrics constant and dielectric loss. Wyd. 2. Oxford: Clarendon Press, 1986.
Znajdź pełny tekst źródłaHuff, H. R., i D. C. Gilmer, red. High Dielectric Constant Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b137574.
Pełny tekst źródłaHo, Paul S., Jihperng Jim Leu i Wei William Lee, red. Low Dielectric Constant Materials for IC Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55908-2.
Pełny tekst źródłaHo, Paul S. Low Dielectric Constant Materials for IC Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.
Znajdź pełny tekst źródłaS, Rathore Hazara, i Electrochemical Society. Dielectric Science and Technology Division., red. Proceedings of the Second International Symposium on Low and High Dielectric Constant Materials: Materials Science, Processing, and Reliability Issues. Pennington, NJ: Electrochemical Society, 1997.
Znajdź pełny tekst źródłaJ, Lododa Mark, Electrochemical Society. Dielectric Science and Technology Division., Electrochemical Society Electronics Division i International Symposium on Low and High Dielectric Constant Materials: Materials Science, Processing, and Reliability Issues (5th : 2000 : Toronto, Ont.), red. Low and high dielectric constant materials: Materials science, processing, and reliability issues : proceedings of the fifth international symposium. Pennington , NJ: Electrochemical Society, Inc., 2000.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Theoretical study of the transverse dielectric constant of superlattices and their alloys. [Urbana, Ill.]: University of Illinois at Urbana-Champaign, Coordinated Science Laboratory, College of Engineering, 1986.
Znajdź pełny tekst źródłaBorst, Christopher L., William N. Gill i Ronald J. Gutmann. Chemical-Mechanical Polishing of Low Dielectric Constant Polymers and Organosilicate Glasses. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-1165-6.
Pełny tekst źródłaJack, Gow Anthony, Morey Rexford M, Cold Regions Research and Engineering Laboratory (U.S.) i National Science Foundation (U.S.). Division of Polar Programs., red. A reassessment of the in-situ dielectric constant of polar firn. [Hanover, N.H.]: US Army Corps of Engineers, Cold Regions Research & Engineering Laboratory, 1993.
Znajdź pełny tekst źródłaCzęści książek na temat "Dielectric Constant"
Gooch, Jan W. "Dielectric Constant". W Encyclopedic Dictionary of Polymers, 213. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_3582.
Pełny tekst źródłaGooch, Jan W. "Dielectric Constant". W Encyclopedic Dictionary of Polymers, 887. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_13555.
Pełny tekst źródłaWeik, Martin H. "dielectric constant". W Computer Science and Communications Dictionary, 402. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_4960.
Pełny tekst źródłada Silva, E. C. F. "AlSb: dielectric constant". W New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors, 133. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14148-5_77.
Pełny tekst źródłaGooch, Jan W. "Complex Dielectric Constant". W Encyclopedic Dictionary of Polymers, 160. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_2733.
Pełny tekst źródłaStrauch, D. "CaSe: dielectric constant". W New Data and Updates for several IIa-VI Compounds (Structural Properties, Thermal and Thermodynamic Properties, and Lattice Properties), 241. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41461-9_102.
Pełny tekst źródłaStrauch, D. "CaTe: dielectric constant". W New Data and Updates for several IIa-VI Compounds (Structural Properties, Thermal and Thermodynamic Properties, and Lattice Properties), 250. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41461-9_107.
Pełny tekst źródłaStrauch, D. "CaS: dielectric constant". W New Data and Updates for several IIa-VI Compounds (Structural Properties, Thermal and Thermodynamic Properties, and Lattice Properties), 231. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41461-9_97.
Pełny tekst źródłaStrauch, Dieter. "SrS: Dielectric Constant". W Semiconductors, 123–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53620-9_33.
Pełny tekst źródłaStrauch, Dieter. "SrSe: Dielectric Constant". W Semiconductors, 135–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53620-9_38.
Pełny tekst źródłaStreszczenia konferencji na temat "Dielectric Constant"
Zhang, Tian, Yash Thakur i Q. M. Zhang. "Doped dielectric polymers with low dielectric constant nanofillers". W 2017 IEEE Conference on Electrical Insulation and Dielectric Phenomenon (CEIDP). IEEE, 2017. http://dx.doi.org/10.1109/ceidp.2017.8257447.
Pełny tekst źródłaAttiya, Ahmed M., i W. M. Hassan. "Interdigital capacitor dielectric constant probe". W 2017 IEEE Asia Pacific Microwave Conference (APMC). IEEE, 2017. http://dx.doi.org/10.1109/apmc.2017.8251499.
Pełny tekst źródłaSiwang Kou, Shuhui Yu, Rong Sun i Ching Ping Wong. "High-dielectric-constant graphite oxide-polyimide composites as embedded dielectrics". W 2012 7th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). IEEE, 2012. http://dx.doi.org/10.1109/impact.2012.6420222.
Pełny tekst źródłaZhang, Zhen, Liwu Liu, Jiumin Fan, Kai Yu, Yanju Liu, Liang Shi i Jinsong Leng. "New silicone dielectric elastomers with a high dielectric constant". W The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, redaktor Douglas K. Lindner. SPIE, 2008. http://dx.doi.org/10.1117/12.775989.
Pełny tekst źródłaDharmadhikari, D. M., i S. N. Helambe. "Analyzing dielectric constant using homocentric resonator". W 2017 IEEE Applied Electromagnetics Conference (AEMC). IEEE, 2017. http://dx.doi.org/10.1109/aemc.2017.8325675.
Pełny tekst źródłaValavade, A. V., D. C. Kothari i C. Löbbe. "Dielectric constant microscopy for biological materials". W SOLID STATE PHYSICS: PROCEEDINGS OF THE 57TH DAE SOLID STATE PHYSICS SYMPOSIUM 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4791140.
Pełny tekst źródłaRichert, Ranko, i Hermann Wagner. "Dielectric relaxation under constant-charge conditions". W Dielectric and Related Phenomena: Materials Physico-Chemistry, Spectrometric Investigations, and Applications, redaktor Andrzej Wlochowicz. SPIE, 1997. http://dx.doi.org/10.1117/12.276276.
Pełny tekst źródłaGarcia-Garcia, J., J. Ocampo, C. Martinez i J. Alonso. "Thick film high dielectric constant resonators". W 2011 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS). IEEE, 2011. http://dx.doi.org/10.1109/comcas.2011.6105872.
Pełny tekst źródłaUmenyiora, C. A., R. L. Druce, R. D. Curry, P. Norgard, T. McKee, J. J. Bowders i D. A. Bryan. "Measurement of sand effective dielectric constant". W 2011 IEEE Pulsed Power Conference (PPC). IEEE, 2011. http://dx.doi.org/10.1109/ppc.2011.6191454.
Pełny tekst źródłaKother, Dietmar, i Uwe Gollor. "Characterization of low dielectric constant materials". W 2007 69th ARFTG Microwave Measurements Conference. IEEE, 2007. http://dx.doi.org/10.1109/arftg.2007.5456337.
Pełny tekst źródłaRaporty organizacyjne na temat "Dielectric Constant"
Brisco, B., T. J. Pultz, R. J. Brown, G. C. Topp i W D Zebchuk. Dielectric Constant Measurements of Soil With Portable Dielectric Probes and TDR Techniques. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/218269.
Pełny tekst źródłaNahman, N. S. Dielectric constant measurements on n-heptane and 2-heptanone. Office of Scientific and Technical Information (OSTI), styczeń 1994. http://dx.doi.org/10.2172/527432.
Pełny tekst źródłaBrody, Philip S. Dielectric Constant Decrease upon Illumination in a Barium Titanate Crystal. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 1997. http://dx.doi.org/10.21236/ada324231.
Pełny tekst źródłaMazzaro, Gregory J., Gregory D. Smith, Getachew Kirose i Kelly D. Sherbondy. Effect of Cold Temperature on the Dielectric Constant of Soil. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2012. http://dx.doi.org/10.21236/ada561950.
Pełny tekst źródłaWu, Shun Jackson. Development of low dielectric constant alumina-based ceramics for microelectronic substrates. Office of Scientific and Technical Information (OSTI), maj 1993. http://dx.doi.org/10.2172/10150031.
Pełny tekst źródłaKohl, Paul, i Sue A. Bidstrup. Low Dielectric Constant Insulators and Gold Metallization for GHz Multi-Chip Modules. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1992. http://dx.doi.org/10.21236/ada252881.
Pełny tekst źródłaMopsik, Frederick I., i Brian Dickens. The measurement of the dielectric constant of polymeric films at high fields. Gaithersburg, MD: National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.4910.
Pełny tekst źródłaKohl, Paul, Sue A. Bidstrup i David Hertling. Low Dielectric Constant Insulators and Gold Metallization for GHz Multi-Chip Modules. Part 2. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1995. http://dx.doi.org/10.21236/ada306976.
Pełny tekst źródłaToney, Michael F. Supercritical carbon dioxide extraction of porogens for the preparation of ultralow-dielectric-constant films. Office of Scientific and Technical Information (OSTI), czerwiec 2003. http://dx.doi.org/10.2172/813355.
Pełny tekst źródłaHe, Rui, Na (Luna) Lu i Jan Olek. Development of In-Situ Sensing Method for the Monitoring of Water-Cement (w/c) Values and the Effectiveness of Curing Concrete. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317377.
Pełny tekst źródła