Artykuły w czasopismach na temat „Diamond Anvil Cell (DAC)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Diamond Anvil Cell (DAC)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Li, Bing, Cheng Ji, Wenge Yang, Junyue Wang, Ke Yang, Ruqing Xu, Wenjun Liu, Zhonghou Cai, Jiuhua Chen i Ho-kwang Mao. "Diamond anvil cell behavior up to 4 Mbar". Proceedings of the National Academy of Sciences 115, nr 8 (5.02.2018): 1713–17. http://dx.doi.org/10.1073/pnas.1721425115.
Pełny tekst źródłaArlt, T., i R. J. Angel. "Pressure buffering in a diamond anvil cell". Mineralogical Magazine 64, nr 2 (kwiecień 2000): 241–45. http://dx.doi.org/10.1180/002646100549337.
Pełny tekst źródłaAlabdulkarim, Mohamad E., Wendy D. Maxwell, Vibhor Thapliyal i James L. Maxwell. "A Comprehensive Review of High-Pressure Laser-Induced Materials Processing, Part I: Laser-Heated Diamond Anvil Cells". Journal of Manufacturing and Materials Processing 6, nr 5 (29.09.2022): 111. http://dx.doi.org/10.3390/jmmp6050111.
Pełny tekst źródłaOkuda, Yoshiyuki, Kenta Oka, Koutaro Hikosaka i Kei Hirose. "Novel non-Joule heating technique: Externally laser-heated diamond anvil cell". Review of Scientific Instruments 94, nr 4 (1.04.2023): 043901. http://dx.doi.org/10.1063/5.0122111.
Pełny tekst źródłaAlabdulkarim, Mohamad E., Wendy D. Maxwell, Vibhor Thapliyal i James L. Maxwell. "A Comprehensive Review of High-Pressure Laser-Induced Materials Processing, Part III: Laser Reactive Synthesis within Diamond Anvil Cells". Journal of Manufacturing and Materials Processing 7, nr 2 (3.03.2023): 57. http://dx.doi.org/10.3390/jmmp7020057.
Pełny tekst źródłaSun, Yong Zhou, Jiu Hua Chen, Vadym Drozd i Shah Najiba. "Behavior of Decomposed Ammonia Borane at High Pressure up to ~10 GPa". Materials Science Forum 783-786 (maj 2014): 1829–35. http://dx.doi.org/10.4028/www.scientific.net/msf.783-786.1829.
Pełny tekst źródłaWang, Jia, i Bao Jia Wu. "Thin Film Microcircuit Preparation in a Diamond Anvil Cell". Advanced Materials Research 690-693 (maj 2013): 499–502. http://dx.doi.org/10.4028/www.scientific.net/amr.690-693.499.
Pełny tekst źródłaNissim, N., S. Eliezer, M. Werdiger i L. Perelmutter. "Approaching the “cold curve” in laser-driven shock wave experiment of a matter precompressed by a partially perforated diamond anvil". Laser and Particle Beams 31, nr 1 (18.12.2012): 73–79. http://dx.doi.org/10.1017/s0263034612000742.
Pełny tekst źródłaSkelton, E. F., A. W. Webb, M. W. Schaefer, D. Schiferl, A. I. Katz, H. D. Hochheimer i S. B. Qadri. "X-Ray Diffraction Studies Under Non-Ambient Conditions: Application to Transition-Metal Dichalcogenide Solid Lubricants". Advances in X-ray Analysis 30 (1986): 465–71. http://dx.doi.org/10.1154/s0376030800021625.
Pełny tekst źródłaDasenbrock-Gammon, Nathan, Raymond McBride, Gyeongjae Yoo, Sachith Dissanayake i Ranga Dias. "Second harmonic AC calorimetry technique within a diamond anvil cell". Review of Scientific Instruments 93, nr 9 (1.09.2022): 093901. http://dx.doi.org/10.1063/5.0104705.
Pełny tekst źródłaSahu, P. Ch, N. R. Sanjay Kumar, N. V. Chandra Shekar i N. Subramanian. "An easy to use X-ray collimator for Mao-Bell type diamond anvil cell". Powder Diffraction 21, nr 4 (grudzień 2006): 320–22. http://dx.doi.org/10.1154/1.2362856.
Pełny tekst źródłaZhang, F. X., C. L. Tracy, J. Shamblin, R. I. Palomares, M. Lang, S. Park, C. Park, S. Tkachev i R. C. Ewing. "Pressure-induced phase transitions of β-type pyrochlore CsTaWO6". RSC Advances 6, nr 97 (2016): 94287–93. http://dx.doi.org/10.1039/c6ra11185h.
Pełny tekst źródłaSorokin, Boris P., Nikita O. Asafiev, Danila A. Ovsyannikov, Gennady M. Kvashnin, Mikhail Yu Popov, Nikolay V. Luparev, Anton V. Golovanov i Vladimir D. Blank. "Microwave acoustic studies of materials in diamond anvil cell under high pressure". Applied Physics Letters 121, nr 19 (7.11.2022): 194102. http://dx.doi.org/10.1063/5.0129651.
Pełny tekst źródłaAlabdulkarim, Mohamad E., Wendy D. Maxwell, Vibhor Thapliyal i James L. Maxwell. "A Comprehensive Review of High-Pressure Laser-Induced Materials Processing, Part II: Laser-Driven Dynamic Compression within Diamond Anvil Cells". Journal of Manufacturing and Materials Processing 6, nr 6 (14.11.2022): 142. http://dx.doi.org/10.3390/jmmp6060142.
Pełny tekst źródłaChapman, Karena W., Peter J. Chupas, Gregory J. Halder, Joseph A. Hriljac, Charles Kurtz, Benjamin K. Greve, Chad J. Ruschman i Angus P. Wilkinson. "Optimizing high-pressure pair distribution function measurements in diamond anvil cells". Journal of Applied Crystallography 43, nr 2 (2.03.2010): 297–307. http://dx.doi.org/10.1107/s0021889810002050.
Pełny tekst źródłaGrzechnik, Andrzej, Martin Meven i Karen Friese. "Single-crystal neutron diffraction in diamond anvil cells with hot neutrons". Journal of Applied Crystallography 51, nr 2 (21.02.2018): 351–56. http://dx.doi.org/10.1107/s1600576718000997.
Pełny tekst źródłaJiang, Dawei, Min Cao, Xiaotong Zhang, Yang Gao i Yonghao Han. "Pressure evolution in a diamond anvil cell without a pressure medium". Journal of Applied Physics 131, nr 12 (28.03.2022): 125904. http://dx.doi.org/10.1063/5.0086792.
Pełny tekst źródłaKim, J. K., Diego Casa, Xianrong Huang, Thomas Gog, B. J. Kim i Jungho Kim. "Montel mirror based collimating analyzer system for high-pressure resonant inelastic X-ray scattering experiments". Journal of Synchrotron Radiation 27, nr 4 (27.05.2020): 963–69. http://dx.doi.org/10.1107/s1600577520005792.
Pełny tekst źródłaDubrovinskaia, Natalia, Leonid Dubrovinsky, Natalia Solopova, Artem Abakumov, Anatoly Snigirev, Irina Snigireva, Vitali Prakapenka i Michael Hanfland. "Nanocrystalline diamond (NCD): an insight into structure-property relationships". Acta Crystallographica Section A Foundations and Advances 70, a1 (5.08.2014): C1334. http://dx.doi.org/10.1107/s2053273314086653.
Pełny tekst źródłaWard, Matthew D., Haw-Tyng Huang, Li Zhu, Arani Biswas, Dmitry Popov, John V. Badding i Timothy A. Strobel. "Chemistry through cocrystals: pressure-induced polymerization of C2H2·C6H6to an extended crystalline hydrocarbon". Physical Chemistry Chemical Physics 20, nr 10 (2018): 7282–94. http://dx.doi.org/10.1039/c7cp07852h.
Pełny tekst źródłaNakamura, Y., I. Fujishiro, K. Nishibe i H. Kawakami. "Measurement of Physical Properties of Lubricants Under High Pressure by Brillouin Scattering in a Diamond Anvil Cell". Journal of Tribology 117, nr 3 (1.07.1995): 519–23. http://dx.doi.org/10.1115/1.2831284.
Pełny tekst źródłaGrzechnik, Andrzej, Martin Meven, Carsten Paulmann i Karen Friese. "Combined X-ray and neutron single-crystal diffraction in diamond anvil cells". Journal of Applied Crystallography 53, nr 1 (1.02.2020): 9–14. http://dx.doi.org/10.1107/s1600576719014201.
Pełny tekst źródłaYoshida, Masahiro, Kenji Ishii, Ignace Jarrige, Tetsu Watanuki, Kazutaka Kudo, Yoji Koike, Ken'ichi Kumagai i in. "Momentum-resolved resonant inelastic X-ray scattering on a single crystal under high pressure". Journal of Synchrotron Radiation 21, nr 1 (7.12.2013): 131–35. http://dx.doi.org/10.1107/s1600577513028944.
Pełny tekst źródłaKatrusiak, Andrzej. "Lab in a DAC – high-pressure crystal chemistry in a diamond-anvil cell". Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 75, nr 6 (15.11.2019): 918–26. http://dx.doi.org/10.1107/s2052520619013246.
Pełny tekst źródłaZhang, Yanan, Yue Wu, Yonghao Han i Yang Gao. "Water-cooling diamond anvil cells: An approach to temperature–pressure relation in heated experiments". Review of Scientific Instruments 93, nr 10 (1.10.2022): 103904. http://dx.doi.org/10.1063/5.0099202.
Pełny tekst źródłaNanba, T., M. Muneyasu, N. Hiraoka, S. Kaga, G. P. Williams, O. Shimomura i T. Adachi. "Phase transitions of CdS microcrystals under high pressure". Journal of Synchrotron Radiation 5, nr 3 (1.05.1998): 1016–19. http://dx.doi.org/10.1107/s0909049597016002.
Pełny tekst źródłaSahle, Ch J., A. D. Rosa, M. Rossi, V. Cerantola, G. Spiekermann, S. Petitgirard, J. Jacobs, S. Huotari, M. Moretti Sala i A. Mirone. "Direct tomography imaging for inelastic X-ray scattering experiments at high pressure". Journal of Synchrotron Radiation 24, nr 1 (1.01.2017): 269–75. http://dx.doi.org/10.1107/s1600577516017100.
Pełny tekst źródłaQIN, X. M., Y. YU, G. M. ZHANG, F. Y. LI, J. LIU i C. Q. JIN. "HIGH-PRESSURE STRUCTURE STUDY OF CuBa2Ca3Cu4O10 + δ SUPERCONDUCTOR". Modern Physics Letters B 19, nr 06 (20.03.2005): 313–16. http://dx.doi.org/10.1142/s0217984905008335.
Pełny tekst źródłaAmaya, K., K. Shimizu i M. I. Eremets. "Search for Superconductivity under Ultra-high Pressure". International Journal of Modern Physics B 13, nr 29n31 (20.12.1999): 3623–25. http://dx.doi.org/10.1142/s0217979299003568.
Pełny tekst źródłaNan, Xuan Guo, Gang Peng i Bao Jia Wu. "Finite Element Analysis Route to Achieve Accurate Resistivity Measurements in Diamond Anvil Cell". Advanced Materials Research 669 (marzec 2013): 279–82. http://dx.doi.org/10.4028/www.scientific.net/amr.669.279.
Pełny tekst źródłaLiermann, H. P., Z. Konôpková, K. Appel, C. Prescher, A. Schropp, V. Cerantola, R. J. Husband i in. "Novel experimental setup for megahertz X-ray diffraction in a diamond anvil cell at the High Energy Density (HED) instrument of the European X-ray Free-Electron Laser (EuXFEL)". Journal of Synchrotron Radiation 28, nr 3 (14.04.2021): 688–706. http://dx.doi.org/10.1107/s1600577521002551.
Pełny tekst źródłaMATSUDA, Y. H., K. UCHIDA, K. ONO, ZIWU JI i S. TAKEYAMA. "DEVELOPMENT OF A PLASTIC DIAMOND ANVIL CELL FOR HIGH PRESSURE MAGNETO-PHOTOLUMINESCENCE IN PULSED HIGH MAGNETIC FIELDS". International Journal of Modern Physics B 18, nr 27n29 (30.11.2004): 3843–46. http://dx.doi.org/10.1142/s0217979204027578.
Pełny tekst źródłaJennings, Eleanor S., Jon Wade, Vera Laurenz i Sylvain Petitgirard. "Diamond Anvil Cell Partitioning Experiments for Accretion and Core Formation: Testing the Limitations of Electron Microprobe Analysis". Microscopy and Microanalysis 25, nr 1 (22.01.2019): 1–10. http://dx.doi.org/10.1017/s1431927618015568.
Pełny tekst źródłaXiong, Lun, Bin Li, Bi Liang, Jinxia Zhu, Hong Yi i Junran Zhang. "A high-pressure study of HfC and nano-crystalline TiC by X-ray diffraction and density functional theory calculations". Modern Physics Letters B 34, nr 34 (15.08.2020): 2050393. http://dx.doi.org/10.1142/s0217984920503935.
Pełny tekst źródłaHalevy, Itzhak, Shlomo Haroush, Yosef Eisen, Ido Silberman, Dany Moreno, Amir Hen, Mike L. Winterrose, Sanjit Ghose i Zhiqiang Chen. "Crystallographic and magnetic structure of HAVAR under high-pressure using diamond anvil cell (DAC)". Hyperfine Interactions 197, nr 1-3 (kwiecień 2010): 135–41. http://dx.doi.org/10.1007/s10751-010-0222-3.
Pełny tekst źródłaZou, Yong Gang, Xiao Hui Ma, Quan Lin Shi, Guo Jun Liu, Qing Xue Sui i Zhi Min Zhang. "Growth and High Pressure Investigation of (C60)n@SWNT". Advanced Materials Research 442 (styczeń 2012): 26–30. http://dx.doi.org/10.4028/www.scientific.net/amr.442.26.
Pełny tekst źródłaHenry, Laura, Volodymyr Svitlyk, Gaston Garbarino, David Sifre i Mohamed Mezouar. "Structure of solid chlorine at 1.45 GPa". Zeitschrift für Kristallographie - Crystalline Materials 234, nr 4 (24.04.2019): 277–80. http://dx.doi.org/10.1515/zkri-2018-2145.
Pełny tekst źródłaSHIMIZU, KATSUYA. "PRESSURE-INDUCED SUPERCONDUCTIVITY IN SYMPLE METALS". International Journal of Modern Physics B 19, nr 01n03 (30.01.2005): 259–61. http://dx.doi.org/10.1142/s0217979205028360.
Pełny tekst źródłaBassett, William, i Elise Skalwold. "Cation Disorder Caused by Olivine-Ringwoodite Phase Transition Mechanism, Possible Explanation for Blue Olivine Inclusion in a Diamond". Minerals 11, nr 2 (15.02.2021): 202. http://dx.doi.org/10.3390/min11020202.
Pełny tekst źródłaZhou, Lin, Qing Ming Zhang, Guang Fu Ji i Zi Zheng Gong. "First Principle Study for the Melting Properties of Face-Centred-Cubic Aluminum". Key Engineering Materials 535-536 (styczeń 2013): 342–45. http://dx.doi.org/10.4028/www.scientific.net/kem.535-536.342.
Pełny tekst źródłaHolbig, Eva, Leonid Dubrovinsky, Gerd Steinle-Neumann, Vitali Prakapenka i Varghese Swamy. "Compression Behavior of Zr-doped Nanoanatase". Zeitschrift für Naturforschung B 61, nr 12 (1.12.2006): 1577–85. http://dx.doi.org/10.1515/znb-2006-1216.
Pełny tekst źródłaSchaeffer, Anne Marie, Scott R. Temple, Jasmine K. Bishop i Shanti Deemyad. "High-pressure superconducting phase diagram of 6Li: Isotope effects in dense lithium". Proceedings of the National Academy of Sciences 112, nr 1 (23.12.2014): 60–64. http://dx.doi.org/10.1073/pnas.1412638112.
Pełny tekst źródłaCasati, Nicola, Annette Kleppe, Fabrizio Nestola i Heribert Wilhelm. "Single crystal diffraction at high energy and high pressure on I15 at DLS". Acta Crystallographica Section A Foundations and Advances 70, a1 (5.08.2014): C402. http://dx.doi.org/10.1107/s2053273314095977.
Pełny tekst źródłaHirose, Kei. "Deep Earth mineralogy revealed by ultrahigh-pressure experiments". Mineralogical Magazine 78, nr 2 (kwiecień 2014): 437–46. http://dx.doi.org/10.1180/minmag.2014.078.2.13.
Pełny tekst źródłaHofmeister, A. M. "Infrared Microspectroscopy in Earth and Planetary Science: Recent Developments, Including In Situ High-Pressure, High-Temperature Techniques". Microscopy and Microanalysis 3, S2 (sierpień 1997): 857–58. http://dx.doi.org/10.1017/s143192760001117x.
Pełny tekst źródłaYao, L. D., S. D. Luo, X. Shen, S. J. You, L. X. Yang, S. J. Zhang, S. Jiang i in. "Structural stability and Raman scattering of InN nanowires under high pressure". Journal of Materials Research 25, nr 12 (grudzień 2010): 2330–35. http://dx.doi.org/10.1557/jmr.2010.0290.
Pełny tekst źródłaHsieh, Wen-Pin, Yi-Chi Tsao i Chun-Hung Lin. "Thermal Conductivity of Helium and Argon at High Pressure and High Temperature". Materials 15, nr 19 (26.09.2022): 6681. http://dx.doi.org/10.3390/ma15196681.
Pełny tekst źródłaTchoń, D., i A. Makal. "Maximizing completeness in single-crystal high-pressure diffraction experiments: phase transitions in 2°AP". IUCrJ 8, nr 6 (15.10.2021): 1006–17. http://dx.doi.org/10.1107/s2052252521009532.
Pełny tekst źródłaYusa, Hitoshi. "Introduction to DAC Techniques. Technology for Generating High-Temperature in Diamond Anvil Cell by Using Lasers." REVIEW OF HIGH PRESSURE SCIENCE AND TECHNOLOGY 8, nr 1 (1998): 49–56. http://dx.doi.org/10.4131/jshpreview.8.49.
Pełny tekst źródłaKuznetsov, A. Yu, L. Dubrovinsky, A. Kurnosov, M. M. Lucchese, W. Crichton i C. A. Achete. "High-Pressure Synthesis and Study of NO+NO3− and NO2+NO3− Ionic Solids". Advances in Physical Chemistry 2009 (4.01.2009): 1–11. http://dx.doi.org/10.1155/2009/180784.
Pełny tekst źródła