Gotowa bibliografia na temat „Detection”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Detection”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Detection"
Qian, Sen. "What Is Detection?" Detection 02, nr 02 (2014): 7–9. http://dx.doi.org/10.4236/detection.2014.22002.
Pełny tekst źródłaSugiura, Hiroki, Shinichi Demura, Yoshinori Nagasawa, Shunsuke Yamaji, Tamotsu Kitabayashi, Shigeki Matsuda, Takayoshi Yamada i Ning Xu. "Relationship between Extent of Coffee Intake and Recognition of Its Effects and Ingredients". Detection 01, nr 01 (2013): 1–6. http://dx.doi.org/10.4236/detection.2013.11001.
Pełny tekst źródłaBrandão, Marcelo Luiz Lima, Carla de Oliveira Rosas, Silvia Maria Lopes Bricio, Valéria de Mello Medeiros, Juliana de Castro Beltrão da Costa, Rodrigo Rollin Pinheiro, Paola Cardarelli-Leite, Marcus Henrique Campino de La Cruz i Armi Wanderley da Nóbrega. "Preparation of Reference Material for Proficiency Test for Enumeration of Coliforms in Cheese Matrix". Detection 01, nr 01 (2013): 7–12. http://dx.doi.org/10.4236/detection.2013.11002.
Pełny tekst źródłaZhang, Jianyong, Xiao Cai i Xiaohu Mo. "On Two Cryogenic Systems of High Purity Germanium Detector". Detection 01, nr 02 (2013): 13–20. http://dx.doi.org/10.4236/detection.2013.12003.
Pełny tekst źródłaChuto, Maneenuch, Sudkate Chaiyo, Weena Siangproh i Orawon Chailapakul. "A Rapid Separation and Highly Determination of Paraben Species by Ultra-Performance Liquid Chromatography —Electrochemical Detection". Detection 01, nr 02 (2013): 21–29. http://dx.doi.org/10.4236/detection.2013.12004.
Pełny tekst źródłaCardone, Fabio, Giovanni Cherubini, Walter Perconti, Andrea Petrucci i Alberto Rosada. "Neutron Imaging by Boric Acid". Detection 01, nr 02 (2013): 30–35. http://dx.doi.org/10.4236/detection.2013.12005.
Pełny tekst źródłaWeng, Binbin, Jijun Qiu, Lihua Zhao, Caleb Chang i Zhisheng Shi. "Theoretical D* Optimization of N+-p Pb<sub>1-x</sub>Sn<sub>x</sub>Se Long-Wavelength (8 - 11 μm) Photovoltaic Detector at 77 K". Detection 02, nr 01 (2014): 1–6. http://dx.doi.org/10.4236/detection.2014.21001.
Pełny tekst źródłaŻak, Dariusz, Jarosław Jureńczyk i Janusz Kaniewski. "Zener Phenomena in InGaAs/InAlAs/InP Avalanche Photodiodes". Detection 02, nr 02 (2014): 10–15. http://dx.doi.org/10.4236/detection.2014.22003.
Pełny tekst źródłaWu, Jun, Hao Fu i Xiashi Zhu. "Separation/Analysis Rhodamine B by Anion Surfactant/Ionic Liquid Aqueous Two-Phase Systems Coupled with Ultraviolet Spectrometry". Detection 02, nr 03 (2014): 17–25. http://dx.doi.org/10.4236/detection.2014.23004.
Pełny tekst źródłaSaleh, Tawfik A. "Detection: From Electrochemistry to Spectroscopy with Chromatographic Techniques, Recent Trends with Nanotechnology". Detection 02, nr 04 (2014): 27–32. http://dx.doi.org/10.4236/detection.2014.24005.
Pełny tekst źródłaRozprawy doktorskie na temat "Detection"
Kapoor, Prince. "Shoulder Keypoint-Detection from Object Detection". Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38015.
Pełny tekst źródłaLaxhammar, Rikard. "Conformal anomaly detection : Detecting abnormal trajectories in surveillance applications". Doctoral thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-8762.
Pełny tekst źródłaAlbrektsson, Fredrik. "Detecting Sockpuppets in Social Media with Plagiarism Detection Algorithms". Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-208553.
Pełny tekst źródłaAllteftersom nya former av propaganda och informationskontroll sprider sig över internet krävs också nya sätt att identifiera dessa. En allt mer populär metod för att sprida falsk information på mikrobloggar som Twitter är att göra det från till synes ordinära, men centralt kontrollerade och koordinerade användarkonton – på engelska kända som “sockpuppets”. I denna undersökning testar vi ett antal potentiella metoder för att identifiera dessa genom att applicera plagiatkontrollalgoritmer ämnade för text, och utvärderar deras prestanda mot denna sortens hot. Vi identifierar framför allt en typ av algoritm – den som nyttjar vektorrymdsmodellering av text – som speciellt användbar i detta avseende.
Le, Anhtuan. "Intrusion Detection System for detecting internal threats in 6LoWPAN". Thesis, Middlesex University, 2017. http://eprints.mdx.ac.uk/21958/.
Pełny tekst źródłaOlsson, Jonathan. "Detecting Faulty Piles of Wood using Anomaly Detection Techniques". Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-83061.
Pełny tekst źródłaPrevot, Yohan. "Arterial perfusion detection method by synchronous detection". [Tampa, Fla] : University of South Florida, 2005. http://purl.fcla.edu/usf/dc/et/SFE0001385.
Pełny tekst źródłaChau, Sam. "Investigation of silicon PIN-detector for laser pulse detection". Thesis, Linköping University, Department of Science and Technology, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-325.
Pełny tekst źródłaThis report has been written at SAAB Bofors Dynamics (SBD) AB in Gothenburg at the department of optronic systems.
In military observation operations, a target to hit is chosen by illumination of a laser designator. From the targetpoint laser radiation is reflected on a detector that helps identify the target. The detector is a semiconductor PIN-type that has been investigated in a laboratory environment together with a specially designed laser source. The detector is a photodiode and using purchased components, circuits for both the photodiode and the laserdiode has been designed and fabricated. The bandwidth of the op-amp should be about 30 MHz, in the experiments a bandwidth of 42 MHz was used. Initially the feedback network, which consists of a 5.6 pF capacitor in parallel with a 1-kohm resistor determined the bandwidth. To avoid the op-amp saturate under strong illuminated laser radiation the feedback network will use a 56-pF capacitor and a 100-ohm resistor respectively.
The laser should be pulsed with 10-20 ns width, 10 Hz repetition frequency, about 800 nm wavelength and a maximum output power of 80 mW. To avoid electrical reflection signals at measurement equipment connections, the laser circuit includes a resistor of about 50 ohm, that together with the resistance in the laserdiode forms the right termination that eliminate the reflection signals. The wire-wound type of resistor shall be avoided in this application and instead a surface mounted type was beneficial with much lower inductance. The detector showed a linear behaviour up to 40-mW optical power. Further investigation was hindered by the breakdown of the laserdiodes. The function generator limits the tests to achieve 80 mW in light power. In different experiments the responsivity of the photodiode is different from the nominal value, however it would have required more time to investigate the causes.
Chang, Pi-Jung. "Double Chooz neutrino detector: neutron detection systematic errors and detector seasonal stability". Diss., Kansas State University, 2013. http://hdl.handle.net/2097/16861.
Pełny tekst źródłaDepartment of Physics
Glenn Horton-Smith
In March 2012, the Double Chooz reactor neutrino experiment published its most precise result so far: sin[superscript]2 2theta13 = 0.109 +/- 0.030(stat.) +/- 0.025(syst.). The statistical significance is 99.8% away from the no-oscillation hypothesis. The systematic uncertainties from background and detection efficiency are smaller than the first publication of the Double Chooz experiment. The neutron detection efficiency, one of the biggest contributions in detection systematic uncertainties, is a primary topic of this dissertation. The neutron detection efficiency is the product of three factors: the Gd-capture fraction, the efficiency of time difference between prompt and delayed signals, and the efficiency of energy containment. [superscript]252 Cf is used to determine the three factors in this study. The neutron detection efficiency from the [superscript]252 Cf result is confirmed by the electron antineutrino data and Monte Carlo simulations. The systematic uncertainty from the neutron detection efficiency is 0.91% used in the sin[superscript]2 2theta13 analysis. The seasonal variation in detector performance and the seasonal variations of the muon intensity are described in detail as well. The detector stability is confirmed by observation of two phenomena: 1) the [electron antineutrino] rate, which is seen to be uncorrelated with the liquid scintillator temperature, and 2) the daily muon rate, which has the expected correspondence with the effective atmospheric temperature. The correlation between the muon rate and effective atmospheric temperature is further analyzed in this thesis to determine the ratio of kaon to pion in the local atmosphere. An upper limit on instability of the neutron detection efficiency is established in the final chapter. The systematic error, 0.13%, from the relative instability is the deviation of the calibration runs. This thesis concludes with the potential systematic errors of neutron detection efficiency and estimation of how these potential systematic errors affect the result of sin[superscript]2 2theta13.
Wang, Jinghui. "Evaluation of GaN as a Radiation Detection Material". The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1343316898.
Pełny tekst źródłaFrascarelli, Antonio Ezio. "Object Detection". Thesis, Mälardalens högskola, Inbyggda system, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-28259.
Pełny tekst źródłaKsiążki na temat "Detection"
G, Greene Douglas, red. Detection by Gaslight: 14 Victorian Detective Stories. Mineola, N.Y., USA: Dover Publications, 1997.
Znajdź pełny tekst źródłaLee, Wenke, Cliff Wang i David Dagon, red. Botnet Detection. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-68768-1.
Pełny tekst źródłaChugg, Keith M., Achilleas Anastasopoulos i Xiaopeng Chen. Iterative Detection. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1699-6.
Pełny tekst źródłaVerschuere, Bruno, Gershon Ben-Shakhar i Ewout Meijer, red. Memory Detection. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511975196.
Pełny tekst źródłaChristodorescu, Mihai, Somesh Jha, Douglas Maughan, Dawn Song i Cliff Wang, red. Malware Detection. Boston, MA: Springer US, 2007. http://dx.doi.org/10.1007/978-0-387-44599-1.
Pełny tekst źródłaCapineri, Lorenzo, i Eyüp Kuntay Turmuş, red. Explosives Detection. Dordrecht: Springer Netherlands, 2019. http://dx.doi.org/10.1007/978-94-024-1729-6.
Pełny tekst źródłaSengupta, Nandita, i Jaya Sil. Intrusion Detection. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2716-6.
Pełny tekst źródłaGaspar, Imre, red. RNA Detection. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7213-5.
Pełny tekst źródłaLane, Brian. Crime & detection. New York: DK Pub., 2005.
Znajdź pełny tekst źródłaHeyer, Georgette. Detection Unlimited. Bath: Chivers Press, 1993.
Znajdź pełny tekst źródłaCzęści książek na temat "Detection"
Bzik, Thomas J. "Detecting the Detection Limit". W Detection Limits in Air Quality and Environmental Measurements, 1–15. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2019. http://dx.doi.org/10.1520/stp161820180117.
Pełny tekst źródłaAscari, Maurizio. "Detection before Detection". W A Counter-History of Crime Fiction, 17–40. London: Palgrave Macmillan UK, 2007. http://dx.doi.org/10.1057/9780230234536_2.
Pełny tekst źródłaChugg, Keith M., Achilleas Anastasopoulos i Xiaopeng Chen. "Overview of Non-Iterative Detection". W Iterative Detection, 1–76. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1699-6_1.
Pełny tekst źródłaChugg, Keith M., Achilleas Anastasopoulos i Xiaopeng Chen. "Principles of Iterative Detection". W Iterative Detection, 77–191. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1699-6_2.
Pełny tekst źródłaChugg, Keith M., Achilleas Anastasopoulos i Xiaopeng Chen. "Iterative Detection for Complexity Reduction". W Iterative Detection, 193–238. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1699-6_3.
Pełny tekst źródłaChugg, Keith M., Achilleas Anastasopoulos i Xiaopeng Chen. "Adaptive Iterative Detection". W Iterative Detection, 239–71. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1699-6_4.
Pełny tekst źródłaChugg, Keith M., Achilleas Anastasopoulos i Xiaopeng Chen. "Applications in Two Dimensional Systems". W Iterative Detection, 273–313. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1699-6_5.
Pełny tekst źródłaBeerel, Peter A. "Implementation Issues: A Turbo Decoder Design Case Study". W Iterative Detection, 315–40. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1699-6_6.
Pełny tekst źródłaSengupta, Nandita, i Jaya Sil. "Introduction". W Intrusion Detection, 1–25. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2716-6_1.
Pełny tekst źródłaSengupta, Nandita, i Jaya Sil. "Discretization". W Intrusion Detection, 27–46. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2716-6_2.
Pełny tekst źródłaStreszczenia konferencji na temat "Detection"
Ulyanov, N. A., S. V. Yaskevich i P. A. Dergach. "DETECTION OF RECORDS OF WEAK LOCAL EARTHQUAKES USING MACHINE LEARNING". W All-Russian Youth Scientific Conference with the Participation of Foreign Scientists Trofimuk Readings - 2021. Novosibirsk State University, 2021. http://dx.doi.org/10.25205/978-5-4437-1251-2-76-78.
Pełny tekst źródłaGauch, Anja, i Richard Diurba. "Prototyping the Light Detection of the DUNE Near Detector". W Prototyping the Light Detection of the DUNE Near Detector. US DOE, 2023. http://dx.doi.org/10.2172/2283763.
Pełny tekst źródłaBeck, M., M. E. Anderson i M. G. Raymer. "Imaging through Scattering Media Using Pulsed Homodyne Detection". W Advances in Optical Imaging and Photon Migration. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/aoipm.1994.ci.257.
Pełny tekst źródłaStrotov, V. V., i P. E. Zhgutov. "Combining Several Algorithmsto Increase the Accuracy of Pedestrian Detection and Localization". W 32nd International Conference on Computer Graphics and Vision. Keldysh Institute of Applied Mathematics, 2022. http://dx.doi.org/10.20948/graphicon-2022-628-635.
Pełny tekst źródłaBedard, Alfred J. "The Infrasound Network (ISNet) as an 88D Adjunct Tornado Detection Tool: The Status of Infrasonic Tornado Detection". W ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-10480.
Pełny tekst źródłaPacaldo, Joren Mundane, Chi Wee Tan, Wah Pheng Lee, Dustin Gerard Ancog i Haroun Al Raschid Christopher Macalisang. "Utilizing Synthetically-Generated License Plate Automatic Detection and Recognition of Motor Vehicle Plates in Philippines". W International Conference on Digital Transformation and Applications (ICDXA 2021). Tunku Abdul Rahman University College, 2021. http://dx.doi.org/10.56453/icdxa.2021.1022.
Pełny tekst źródłaKhalid, Anna. "Kilonova Detection". W Kilonova Detection. US DOE, 2023. http://dx.doi.org/10.2172/1995266.
Pełny tekst źródłaMitrevski, Jovan. "Low Energy LArTPC Signal Detection Using Anomaly Detection". W Low Energy LArTPC Signal Detection Using Anomaly Detection. US DOE, 2023. http://dx.doi.org/10.2172/2204657.
Pełny tekst źródłaKolodziej, Joanna, Mateusz Krzyszton i Pawel Szynkiewicz. "Anomaly Detection In TCP/IP Networks". W 37th ECMS International Conference on Modelling and Simulation. ECMS, 2023. http://dx.doi.org/10.7148/2023-0542.
Pełny tekst źródłaXu, Bin, Dongliang Yu, Jiayong Wu, Hongchao Wang, Dongjie Tan i Likun Wang. "Research on Infrared Laser Leak Detection for Natural Gas Pipeline". W 2012 9th International Pipeline Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ipc2012-90082.
Pełny tekst źródłaRaporty organizacyjne na temat "Detection"
Broder, Bruce, i Stuart Schwartz. Quickest Detection Procedures and Transient Signal Detection. Fort Belvoir, VA: Defense Technical Information Center, listopad 1990. http://dx.doi.org/10.21236/ada230068.
Pełny tekst źródłaBussiere, Matthew, Shawn Smith i Stephane Bussiere. DTPH56-15-T-00004 Framework for Verifying and Validating External Leak Detection Systems on Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), wrzesień 2015. http://dx.doi.org/10.55274/r0011847.
Pełny tekst źródłaNestleroth, Dr J. Bruce. PR-3-823-R01 Remote Field Eddy Current Detection of Stress-Corrosion Cracks. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), luty 1990. http://dx.doi.org/10.55274/r0011870.
Pełny tekst źródłaGuan, Yawen, Deborah Sulsky, J. Tucker i Christian Sampson. Feature Detection. Office of Scientific and Technical Information (OSTI), kwiecień 2021. http://dx.doi.org/10.2172/1769711.
Pełny tekst źródłaWendelberger, James G. Pit and Crack Detection Summary Report Crack Detection. Office of Scientific and Technical Information (OSTI), marzec 2019. http://dx.doi.org/10.2172/1504667.
Pełny tekst źródłaLukow, Steven, Ross Lee, Jonathan Gigax i David Grow. Improving Non-Destructive Detection Technology Through SAVY Feature Detection. Office of Scientific and Technical Information (OSTI), sierpień 2022. http://dx.doi.org/10.2172/1884728.
Pełny tekst źródłaVa'vra, Jaroslav. Single Electron Detection in Quadruple-GEM Detector with Pad Readout. Office of Scientific and Technical Information (OSTI), marzec 2001. http://dx.doi.org/10.2172/784889.
Pełny tekst źródłaBarnett, R. M., K. Einsweiler i I. Hinchliffe. Higgs detection via decays to leptons with the SDC detector. Office of Scientific and Technical Information (OSTI), listopad 1990. http://dx.doi.org/10.2172/6053256.
Pełny tekst źródłaSiebenaler. PR-015-084510-R01 Evaluation of External Leak Detection Systems for Liquid Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), wrzesień 2009. http://dx.doi.org/10.55274/r0010674.
Pełny tekst źródłaMelgaard, Seth, Nathaniel Kieber Grady, Nicolas Bikhazi, Aaron Joseph Pung i Jeffrey A. Mercier. Microscale Transient Detection. Office of Scientific and Technical Information (OSTI), grudzień 2017. http://dx.doi.org/10.2172/1494167.
Pełny tekst źródła