Artykuły w czasopismach na temat „DETECTING DEEPFAKES”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „DETECTING DEEPFAKES”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Mai, Kimberly T., Sergi Bray, Toby Davies i Lewis D. Griffin. "Warning: Humans cannot reliably detect speech deepfakes". PLOS ONE 18, nr 8 (2.08.2023): e0285333. http://dx.doi.org/10.1371/journal.pone.0285333.
Pełny tekst źródłaDobber, Tom, Nadia Metoui, Damian Trilling, Natali Helberger i Claes de Vreese. "Do (Microtargeted) Deepfakes Have Real Effects on Political Attitudes?" International Journal of Press/Politics 26, nr 1 (25.07.2020): 69–91. http://dx.doi.org/10.1177/1940161220944364.
Pełny tekst źródłaVinogradova, Ekaterina. "The malicious use of political deepfakes and attempts to neutralize them in Latin America". Latinskaia Amerika, nr 5 (2023): 35. http://dx.doi.org/10.31857/s0044748x0025404-3.
Pełny tekst źródłaSingh, Preeti, Khyati Chaudhary, Gopal Chaudhary, Manju Khari i Bharat Rawal. "A Machine Learning Approach to Detecting Deepfake Videos: An Investigation of Feature Extraction Techniques". Journal of Cybersecurity and Information Management 9, nr 2 (2022): 42–50. http://dx.doi.org/10.54216/jcim.090204.
Pełny tekst źródłaDas, Rashmiranjan, Gaurav Negi i Alan F. Smeaton. "Detecting Deepfake Videos Using Euler Video Magnification". Electronic Imaging 2021, nr 4 (18.01.2021): 272–1. http://dx.doi.org/10.2352/issn.2470-1173.2021.4.mwsf-272.
Pełny tekst źródłaRaza, Ali, Kashif Munir i Mubarak Almutairi. "A Novel Deep Learning Approach for Deepfake Image Detection". Applied Sciences 12, nr 19 (29.09.2022): 9820. http://dx.doi.org/10.3390/app12199820.
Pełny tekst źródłaJameel, Wildan J., Suhad M. Kadhem i Ayad R. Abbas. "Detecting Deepfakes with Deep Learning and Gabor Filters". ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY 10, nr 1 (18.03.2022): 18–22. http://dx.doi.org/10.14500/aro.10917.
Pełny tekst źródłaGiudice, Oliver, Luca Guarnera i Sebastiano Battiato. "Fighting Deepfakes by Detecting GAN DCT Anomalies". Journal of Imaging 7, nr 8 (30.07.2021): 128. http://dx.doi.org/10.3390/jimaging7080128.
Pełny tekst źródłaLim, Suk-Young, Dong-Kyu Chae i Sang-Chul Lee. "Detecting Deepfake Voice Using Explainable Deep Learning Techniques". Applied Sciences 12, nr 8 (13.04.2022): 3926. http://dx.doi.org/10.3390/app12083926.
Pełny tekst źródłaGadgilwar, Jitesh, Kunal Rahangdale, Om Jaiswal, Parag Asare, Pratik Adekar i Prof Leela Bitla. "Exploring Deepfakes - Creation Techniques, Detection Strategies, and Emerging Challenges: A Survey". International Journal for Research in Applied Science and Engineering Technology 11, nr 3 (31.03.2023): 1491–95. http://dx.doi.org/10.22214/ijraset.2023.49681.
Pełny tekst źródłaDobrobaba, M. B. "Deepfakes as a Threat to Human Rights". Lex Russica 75, nr 11 (14.11.2022): 112–19. http://dx.doi.org/10.17803/1729-5920.2022.192.11.112-119.
Pełny tekst źródłaSalvi, Davide, Honggu Liu, Sara Mandelli, Paolo Bestagini, Wenbo Zhou, Weiming Zhang i Stefano Tubaro. "A Robust Approach to Multimodal Deepfake Detection". Journal of Imaging 9, nr 6 (19.06.2023): 122. http://dx.doi.org/10.3390/jimaging9060122.
Pełny tekst źródłaTursman, Eleanor. "Detecting deepfakes using crowd consensus". XRDS: Crossroads, The ACM Magazine for Students 27, nr 1 (4.09.2020): 22–25. http://dx.doi.org/10.1145/3416061.
Pełny tekst źródłaMateen, Marium, i Narmeen Zakaria Bawany. "Deep Learning Approach for Detecting Audio Deepfakes in Urdu". NUML International Journal of Engineering and Computing 2, nr 1 (26.07.2023): 1–11. http://dx.doi.org/10.52015/nijec.v2i1.37.
Pełny tekst źródłaChoi, Nakhoon, i Heeyoul Kim. "DDS: Deepfake Detection System through Collective Intelligence and Deep-Learning Model in Blockchain Environment". Applied Sciences 13, nr 4 (7.02.2023): 2122. http://dx.doi.org/10.3390/app13042122.
Pełny tekst źródłaWan, Da, Manchun Cai, Shufan Peng, Wenkai Qin i Lanting Li. "Deepfake Detection Algorithm Based on Dual-Branch Data Augmentation and Modified Attention Mechanism". Applied Sciences 13, nr 14 (18.07.2023): 8313. http://dx.doi.org/10.3390/app13148313.
Pełny tekst źródłaFrick, Raphael Antonius, Sascha Zmudzinski i Martin Steinebach. "Detecting Deepfakes with Haralick’s Texture Properties". Electronic Imaging 2021, nr 4 (18.01.2021): 271–1. http://dx.doi.org/10.2352/issn.2470-1173.2021.4.mwsf-271.
Pełny tekst źródłaTaeb, Maryam, i Hongmei Chi. "Comparison of Deepfake Detection Techniques through Deep Learning". Journal of Cybersecurity and Privacy 2, nr 1 (4.03.2022): 89–106. http://dx.doi.org/10.3390/jcp2010007.
Pełny tekst źródłaAmatika, Faith. "The Regulation of Deepfakes in Kenya". Journal of Intellectual Property and Information Technology Law (JIPIT) 2, nr 1 (15.09.2022): 145–86. http://dx.doi.org/10.52907/jipit.v2i1.208.
Pełny tekst źródłaArshed, Muhammad Asad, Ayed Alwadain, Rao Faizan Ali, Shahzad Mumtaz, Muhammad Ibrahim i Amgad Muneer. "Unmasking Deception: Empowering Deepfake Detection with Vision Transformer Network". Mathematics 11, nr 17 (29.08.2023): 3710. http://dx.doi.org/10.3390/math11173710.
Pełny tekst źródłaYasrab, Robail, Wanqi Jiang i Adnan Riaz. "Fighting Deepfakes Using Body Language Analysis". Forecasting 3, nr 2 (28.04.2021): 303–21. http://dx.doi.org/10.3390/forecast3020020.
Pełny tekst źródłaTran, Van-Nhan, Suk-Hwan Lee, Hoanh-Su Le i Ki-Ryong Kwon. "High Performance DeepFake Video Detection on CNN-Based with Attention Target-Specific Regions and Manual Distillation Extraction". Applied Sciences 11, nr 16 (20.08.2021): 7678. http://dx.doi.org/10.3390/app11167678.
Pełny tekst źródłaLe, Vincent. "The Deepfakes to Come: A Turing Cop’s Nightmare". Identities: Journal for Politics, Gender and Culture 17, nr 2-3 (30.12.2020): 8–18. http://dx.doi.org/10.51151/identities.v17i2-3.468.
Pełny tekst źródłaFrick, Raphael Antonius, Sascha Zmudzinski i Martin Steinebach. "Detecting “DeepFakes” in H.264 Video Data Using Compression Ghost Artifacts". Electronic Imaging 2020, nr 4 (26.01.2020): 116–1. http://dx.doi.org/10.2352/issn.2470-1173.2020.4.mwsf-116.
Pełny tekst źródłaSaxena, Akash, Dharmendra Yadav, Manish Gupta, Sunil Phulre, Tripti Arjariya, Varshali Jaiswal i Rakesh Kumar Bhujade. "Detecting Deepfakes: A Novel Framework Employing XceptionNet-Based Convolutional Neural Networks". Traitement du Signal 40, nr 3 (28.06.2023): 835–46. http://dx.doi.org/10.18280/ts.400301.
Pełny tekst źródłaA. Abu-Ein, Ashraf, Obaida M. Al-Hazaimeh, Alaa M. Dawood i Andraws I. Swidan. "Analysis of the current state of deepfake techniques-creation and detection methods". Indonesian Journal of Electrical Engineering and Computer Science 28, nr 3 (7.10.2022): 1659. http://dx.doi.org/10.11591/ijeecs.v28.i3.pp1659-1667.
Pełny tekst źródłaGodulla, Alexander, Christian P. Hoffmann i Daniel Seibert. "Dealing with deepfakes – an interdisciplinary examination of the state of research and implications for communication studies". Studies in Communication and Media 10, nr 1 (2021): 72–96. http://dx.doi.org/10.5771/2192-4007-2021-1-72.
Pełny tekst źródłaShahzad, Hina Fatima, Furqan Rustam, Emmanuel Soriano Flores, Juan Luís Vidal Mazón, Isabel de la Torre Diez i Imran Ashraf. "A Review of Image Processing Techniques for Deepfakes". Sensors 22, nr 12 (16.06.2022): 4556. http://dx.doi.org/10.3390/s22124556.
Pełny tekst źródłaVinay, A., Paras S. Khurana, T. B. Sudarshan, S. Natarajan, Vivek Nagesh, Vishruth Lakshminarayanan i Niput Bhat. "AFMB-Net". Tehnički glasnik 16, nr 4 (26.09.2022): 503–8. http://dx.doi.org/10.31803/tg-20220403080215.
Pełny tekst źródłaJiang, Jianguo, Boquan Li, Baole Wei, Gang Li, Chao Liu, Weiqing Huang, Meimei Li i Min Yu. "FakeFilter: A cross-distribution Deepfake detection system with domain adaptation". Journal of Computer Security 29, nr 4 (18.06.2021): 403–21. http://dx.doi.org/10.3233/jcs-200124.
Pełny tekst źródłaGuarnera, Luca, Oliver Giudice, Francesco Guarnera, Alessandro Ortis, Giovanni Puglisi, Antonino Paratore, Linh M. Q. Bui i in. "The Face Deepfake Detection Challenge". Journal of Imaging 8, nr 10 (28.09.2022): 263. http://dx.doi.org/10.3390/jimaging8100263.
Pełny tekst źródłaLópez-Gil, Juan-Miguel, Rosa Gil i Roberto García. "Do Deepfakes Adequately Display Emotions? A Study on Deepfake Facial Emotion Expression". Computational Intelligence and Neuroscience 2022 (18.10.2022): 1–12. http://dx.doi.org/10.1155/2022/1332122.
Pełny tekst źródłaKhormali, Aminollah, i Jiann-Shiun Yuan. "ADD: Attention-Based DeepFake Detection Approach". Big Data and Cognitive Computing 5, nr 4 (27.09.2021): 49. http://dx.doi.org/10.3390/bdcc5040049.
Pełny tekst źródłaShad, Hasin Shahed, Md Mashfiq Rizvee, Nishat Tasnim Roza, S. M. Ahsanul Hoq, Mohammad Monirujjaman Khan, Arjun Singh, Atef Zaguia i Sami Bourouis. "Comparative Analysis of Deepfake Image Detection Method Using Convolutional Neural Network". Computational Intelligence and Neuroscience 2021 (16.12.2021): 1–18. http://dx.doi.org/10.1155/2021/3111676.
Pełny tekst źródłaNoreen, Iram, Muhammad Shahid Muneer i Saira Gillani. "Deepfake attack prevention using steganography GANs". PeerJ Computer Science 8 (20.10.2022): e1125. http://dx.doi.org/10.7717/peerj-cs.1125.
Pełny tekst źródłaBogdanova, D. A. "About some aspects of digital ecology". Informatics in school, nr 7 (19.11.2021): 15–19. http://dx.doi.org/10.32517/2221-1993-2021-20-7-15-19.
Pełny tekst źródłaAkhtar, Zahid. "Deepfakes Generation and Detection: A Short Survey". Journal of Imaging 9, nr 1 (13.01.2023): 18. http://dx.doi.org/10.3390/jimaging9010018.
Pełny tekst źródłaCoccomini, Davide Alessandro, Roberto Caldelli, Fabrizio Falchi i Claudio Gennaro. "On the Generalization of Deep Learning Models in Video Deepfake Detection". Journal of Imaging 9, nr 5 (29.04.2023): 89. http://dx.doi.org/10.3390/jimaging9050089.
Pełny tekst źródłaOlariu, Oana. "Critical Thinking as Dynamic Shield against Media Deception. Exploring Connections between the Analytical Mind and Detecting Disinformation Techniques and Logical Fallacies in Journalistic Production". Logos Universality Mentality Education Novelty: Social Sciences 11, nr 1 (2.09.2022): 29–57. http://dx.doi.org/10.18662/lumenss/11.1/61.
Pełny tekst źródłaMaharjan, Ashish, i Asish Shakya. "Learning Approaches used by Different Applications to Achieve Deep Fake Technology". Interdisciplinary Journal of Innovation in Nepalese Academia 2, nr 1 (22.06.2023): 96–101. http://dx.doi.org/10.3126/idjina.v2i1.55969.
Pełny tekst źródłaLee, Gihun, i Mihui Kim. "Deepfake Detection Using the Rate of Change between Frames Based on Computer Vision". Sensors 21, nr 21 (5.11.2021): 7367. http://dx.doi.org/10.3390/s21217367.
Pełny tekst źródłaKale, Prachi. "Forensic Verification and Detection of Fake Video using Deep Fake Algorithm". International Journal for Research in Applied Science and Engineering Technology 9, nr VI (30.06.2021): 2789–94. http://dx.doi.org/10.22214/ijraset.2021.35599.
Pełny tekst źródłaKhormali, Aminollah, i Jiann-Shiun Yuan. "DFDT: An End-to-End DeepFake Detection Framework Using Vision Transformer". Applied Sciences 12, nr 6 (14.03.2022): 2953. http://dx.doi.org/10.3390/app12062953.
Pełny tekst źródłaMehra, Aman, Akshay Agarwal, Mayank Vatsa i Richa Singh. "Detection of Digital Manipulation in Facial Images (Student Abstract)". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 18 (18.05.2021): 15845–46. http://dx.doi.org/10.1609/aaai.v35i18.17919.
Pełny tekst źródłaYavuzkilic, Semih, Abdulkadir Sengur, Zahid Akhtar i Kamran Siddique. "Spotting Deepfakes and Face Manipulations by Fusing Features from Multi-Stream CNNs Models". Symmetry 13, nr 8 (26.07.2021): 1352. http://dx.doi.org/10.3390/sym13081352.
Pełny tekst źródłaBalasubramanian, Saravana Balaji, Jagadeesh Kannan R, Prabu P, Venkatachalam K i Pavel Trojovský. "Deep fake detection using cascaded deep sparse auto-encoder for effective feature selection". PeerJ Computer Science 8 (13.07.2022): e1040. http://dx.doi.org/10.7717/peerj-cs.1040.
Pełny tekst źródłaYang, Sung-Hyun, Keshav Thapa i Barsha Lamichhane. "Detection of Image Level Forgery with Various Constraints Using DFDC Full and Sample Datasets". Sensors 22, nr 23 (24.11.2022): 9121. http://dx.doi.org/10.3390/s22239121.
Pełny tekst źródłaAmoah-Yeboah, Yaw. "Biometric Spoofing and Deepfake Detection". Advances in Multidisciplinary and scientific Research Journal Publication 1, nr 1 (26.07.2022): 279–84. http://dx.doi.org/10.22624/aims/crp-bk3-p45.
Pełny tekst źródłaĐorđević, Miljan, Milan Milivojević i Ana Gavrovska. "DeepFake video production and SIFT-based analysis". Telfor Journal 12, nr 1 (2020): 22–27. http://dx.doi.org/10.5937/telfor2001022q.
Pełny tekst źródłaBinh, Le Minh, i Simon Woo. "ADD: Frequency Attention and Multi-View Based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 1 (28.06.2022): 122–30. http://dx.doi.org/10.1609/aaai.v36i1.19886.
Pełny tekst źródła