Gotowa bibliografia na temat „DETECTING DEEPFAKES”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „DETECTING DEEPFAKES”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "DETECTING DEEPFAKES"
Mai, Kimberly T., Sergi Bray, Toby Davies i Lewis D. Griffin. "Warning: Humans cannot reliably detect speech deepfakes". PLOS ONE 18, nr 8 (2.08.2023): e0285333. http://dx.doi.org/10.1371/journal.pone.0285333.
Pełny tekst źródłaDobber, Tom, Nadia Metoui, Damian Trilling, Natali Helberger i Claes de Vreese. "Do (Microtargeted) Deepfakes Have Real Effects on Political Attitudes?" International Journal of Press/Politics 26, nr 1 (25.07.2020): 69–91. http://dx.doi.org/10.1177/1940161220944364.
Pełny tekst źródłaVinogradova, Ekaterina. "The malicious use of political deepfakes and attempts to neutralize them in Latin America". Latinskaia Amerika, nr 5 (2023): 35. http://dx.doi.org/10.31857/s0044748x0025404-3.
Pełny tekst źródłaSingh, Preeti, Khyati Chaudhary, Gopal Chaudhary, Manju Khari i Bharat Rawal. "A Machine Learning Approach to Detecting Deepfake Videos: An Investigation of Feature Extraction Techniques". Journal of Cybersecurity and Information Management 9, nr 2 (2022): 42–50. http://dx.doi.org/10.54216/jcim.090204.
Pełny tekst źródłaDas, Rashmiranjan, Gaurav Negi i Alan F. Smeaton. "Detecting Deepfake Videos Using Euler Video Magnification". Electronic Imaging 2021, nr 4 (18.01.2021): 272–1. http://dx.doi.org/10.2352/issn.2470-1173.2021.4.mwsf-272.
Pełny tekst źródłaRaza, Ali, Kashif Munir i Mubarak Almutairi. "A Novel Deep Learning Approach for Deepfake Image Detection". Applied Sciences 12, nr 19 (29.09.2022): 9820. http://dx.doi.org/10.3390/app12199820.
Pełny tekst źródłaJameel, Wildan J., Suhad M. Kadhem i Ayad R. Abbas. "Detecting Deepfakes with Deep Learning and Gabor Filters". ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY 10, nr 1 (18.03.2022): 18–22. http://dx.doi.org/10.14500/aro.10917.
Pełny tekst źródłaGiudice, Oliver, Luca Guarnera i Sebastiano Battiato. "Fighting Deepfakes by Detecting GAN DCT Anomalies". Journal of Imaging 7, nr 8 (30.07.2021): 128. http://dx.doi.org/10.3390/jimaging7080128.
Pełny tekst źródłaLim, Suk-Young, Dong-Kyu Chae i Sang-Chul Lee. "Detecting Deepfake Voice Using Explainable Deep Learning Techniques". Applied Sciences 12, nr 8 (13.04.2022): 3926. http://dx.doi.org/10.3390/app12083926.
Pełny tekst źródłaGadgilwar, Jitesh, Kunal Rahangdale, Om Jaiswal, Parag Asare, Pratik Adekar i Prof Leela Bitla. "Exploring Deepfakes - Creation Techniques, Detection Strategies, and Emerging Challenges: A Survey". International Journal for Research in Applied Science and Engineering Technology 11, nr 3 (31.03.2023): 1491–95. http://dx.doi.org/10.22214/ijraset.2023.49681.
Pełny tekst źródłaRozprawy doktorskie na temat "DETECTING DEEPFAKES"
Hasanaj, Enis, Albert Aveler i William Söder. "Cooperative edge deepfake detection". Thesis, Jönköping University, JTH, Avdelningen för datateknik och informatik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-53790.
Pełny tekst źródłaGardner, Angelica. "Stronger Together? An Ensemble of CNNs for Deepfakes Detection". Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-97643.
Pełny tekst źródłaEmir, Alkazhami. "Facial Identity Embeddings for Deepfake Detection in Videos". Thesis, Linköpings universitet, Datorseende, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-170587.
Pełny tekst źródłaGUARNERA, LUCA. "Discovering Fingerprints for Deepfake Detection and Multimedia-Enhanced Forensic Investigations". Doctoral thesis, Università degli studi di Catania, 2021. http://hdl.handle.net/20.500.11769/539620.
Pełny tekst źródłaSONI, ANKIT. "DETECTING DEEPFAKES USING HYBRID CNN-RNN MODEL". Thesis, 2022. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19168.
Pełny tekst źródłaRASOOL, AALE. "DETECTING DEEPFAKES WITH MULTI-MODEL NEURAL NETWORKS: A TRANSFER LEARNING APPROACH". Thesis, 2023. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19993.
Pełny tekst źródłaChang, Ching-Tang, i 張景棠. "Detecting Deepfake Videos with CNN and Image Partitioning". Thesis, 2019. http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id=%22107NCHU5394052%22.&searchmode=basic.
Pełny tekst źródła國立中興大學
資訊科學與工程學系所
107
The AIgenerated images are gradually similar to the pictures taken. When the generated images are used in inappropriate cases, it will cause damage to people’s rights and benefits. These doubtful images will cause illegal problems. The issue of detecting digital forgery has existed for many years. However, the fake images generated by the development of science and technology are more difficult to distinguish. Therefore, this thesis based on deep learning technology to detect the controversial face manipulation images. We proposed to segment the image block by block method and use CNN to train the features of each block separately. Finally, each feature is voted in an ensemble model to detect forgery images. Accurately, we recognize Faceswap, DeepFakes, and Face2Face with the dataset provided by FaceForensics++. Nowadays, classifiers require not only high accuracy but also the robustness of different datasets. Therefore, we train some data to test whether it is robust in other data. We collected digital forgeries generated by different methods on the videosharing platform to test the generalization of our model in detecting these forgeries.
Książki na temat "DETECTING DEEPFAKES"
Gaur, Loveleen. Deepfakes: Creation, Detection, and Impact. Taylor & Francis Group, 2022.
Znajdź pełny tekst źródłaGaur, Loveleen. Deepfakes: Creation, Detection, and Impact. Taylor & Francis Group, 2022.
Znajdź pełny tekst źródłaGaur, Loveleen. Deepfakes: Creation, Detection, and Impact. Taylor & Francis Group, 2022.
Znajdź pełny tekst źródłaGaur, Loveleen. Deepfakes: Creation, Detection, and Impact. CRC Press LLC, 2022.
Znajdź pełny tekst źródłaGaur, Loveleen. Deepfakes: Creation, Detection, and Impact. CRC Press, 2022.
Znajdź pełny tekst źródłaBusch, Christoph, Christian Rathgeb, Ruben Vera-Rodriguez i Ruben Tolosana. Handbook of Digital Face Manipulation and Detection: From DeepFakes to Morphing Attacks. Springer International Publishing AG, 2021.
Znajdź pełny tekst źródłaBusch, Christoph, Christian Rathgeb, Ruben Vera-Rodriguez i Ruben Tolosana. Handbook of Digital Face Manipulation and Detection: From DeepFakes to Morphing Attacks. Springer International Publishing AG, 2021.
Znajdź pełny tekst źródłaAbdul-Majeed, Ghassan H., Adriana Burlea-Schiopoiu, Parul Aggarwal i Ahmed J. Obaid. Handbook of Research on Advanced Practical Approaches to Deepfake Detection and Applications. IGI Global, 2022.
Znajdź pełny tekst źródłaAbdul-Majeed, Ghassan H., Adriana Burlea-Schiopoiu, Parul Aggarwal i Ahmed J. Obaid. Handbook of Research on Advanced Practical Approaches to Deepfake Detection and Applications. IGI Global, 2022.
Znajdź pełny tekst źródłaAbdul-Majeed, Ghassan H., Adriana Burlea-Schiopoiu, Parul Aggarwal i Ahmed J. Obaid. Handbook of Research on Advanced Practical Approaches to Deepfake Detection and Applications. IGI Global, 2022.
Znajdź pełny tekst źródłaCzęści książek na temat "DETECTING DEEPFAKES"
Korshunov, Pavel, i Sébastien Marcel. "The Threat of Deepfakes to Computer and Human Visions". W Handbook of Digital Face Manipulation and Detection, 97–115. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87664-7_5.
Pełny tekst źródłaZobaed, Sm, Fazle Rabby, Istiaq Hossain, Ekram Hossain, Sazib Hasan, Asif Karim i Khan Md. Hasib. "DeepFakes: Detecting Forged and Synthetic Media Content Using Machine Learning". W Advanced Sciences and Technologies for Security Applications, 177–201. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88040-8_7.
Pełny tekst źródłaLi, Yuezun, Pu Sun, Honggang Qi i Siwei Lyu. "Toward the Creation and Obstruction of DeepFakes". W Handbook of Digital Face Manipulation and Detection, 71–96. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87664-7_4.
Pełny tekst źródłaHernandez-Ortega, Javier, Ruben Tolosana, Julian Fierrez i Aythami Morales. "DeepFakes Detection Based on Heart Rate Estimation: Single- and Multi-frame". W Handbook of Digital Face Manipulation and Detection, 255–73. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87664-7_12.
Pełny tekst źródłaLyu, Siwei. "DeepFake Detection". W Multimedia Forensics, 313–31. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7621-5_12.
Pełny tekst źródłaHao, Hanxiang, Emily R. Bartusiak, David Güera, Daniel Mas Montserrat, Sriram Baireddy, Ziyue Xiang, Sri Kalyan Yarlagadda i in. "Deepfake Detection Using Multiple Data Modalities". W Handbook of Digital Face Manipulation and Detection, 235–54. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87664-7_11.
Pełny tekst źródłaRaturi, Sonali, Amit Kumar Mishra i Srabanti Maji. "Fake News Detection Using Machine Learning". W DeepFakes, 121–33. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003231493-10.
Pełny tekst źródłaRastogi, Shreya, Amit Kumar Mishra i Loveleen Gaur. "Detection of DeepFakes Using Local Features and Convolutional Neural Network". W DeepFakes, 73–89. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003231493-6.
Pełny tekst źródłaBhilare, Omkar, Rahul Singh, Vedant Paranjape, Sravan Chittupalli, Shraddha Suratkar i Faruk Kazi. "DEEPFAKE CLI: Accelerated Deepfake Detection Using FPGAs". W Parallel and Distributed Computing, Applications and Technologies, 45–56. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-29927-8_4.
Pełny tekst źródłaJiang, Liming, Wayne Wu, Chen Qian i Chen Change Loy. "DeepFakes Detection: the Dataset and Challenge". W Handbook of Digital Face Manipulation and Detection, 303–29. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87664-7_14.
Pełny tekst źródłaStreszczenia konferencji na temat "DETECTING DEEPFAKES"
Celebi, Naciye, Qingzhong Liu i Muhammed Karatoprak. "A Survey of Deep Fake Detection for Trial Courts". W 9th International Conference on Artificial Intelligence and Applications (AIAPP 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.120919.
Pełny tekst źródłaKumar, Akash, Arnav Bhavsar i Rajesh Verma. "Detecting Deepfakes with Metric Learning". W 2020 8th International Workshop on Biometrics and Forensics (IWBF). IEEE, 2020. http://dx.doi.org/10.1109/iwbf49977.2020.9107962.
Pełny tekst źródłaDheeraj, J. C., Krutant Nandakumar, A. V. Aditya, B. S. Chethan i G. C. R. Kartheek. "Detecting Deepfakes Using Deep Learning". W 2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT). IEEE, 2021. http://dx.doi.org/10.1109/rteict52294.2021.9573740.
Pełny tekst źródłaLacerda, Gustavo Cunha, i Raimundo Claudio da Silva Vasconcelos. "A Machine Learning Approach for DeepFake Detection". W Anais Estendidos da Conference on Graphics, Patterns and Images. Sociedade Brasileira de Computação - SBC, 2022. http://dx.doi.org/10.5753/sibgrapi.est.2022.23272.
Pełny tekst źródłaShiohara, Kaede, i Toshihiko Yamasaki. "Detecting Deepfakes with Self-Blended Images". W 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022. http://dx.doi.org/10.1109/cvpr52688.2022.01816.
Pełny tekst źródłaMallet, Jacob, Rushit Dave, Naeem Seliya i Mounika Vanamala. "Using Deep Learning to Detecting Deepfakes". W 2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI). IEEE, 2022. http://dx.doi.org/10.1109/iscmi56532.2022.10068449.
Pełny tekst źródłaKhichi, Manish, i Rajesh Kumar Yadav. "Analyzing the Methods for Detecting Deepfakes". W 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N). IEEE, 2021. http://dx.doi.org/10.1109/icac3n53548.2021.9725773.
Pełny tekst źródłaMalik, Yushaa Shafqat, Nosheen Sabahat i Muhammad Osama Moazzam. "Image Animations on Driving Videos with DeepFakes and Detecting DeepFakes Generated Animations". W 2020 IEEE 23rd International Multitopic Conference (INMIC). IEEE, 2020. http://dx.doi.org/10.1109/inmic50486.2020.9318064.
Pełny tekst źródłaHosler, Brian, Davide Salvi, Anthony Murray, Fabio Antonacci, Paolo Bestagini, Stefano Tubaro i Matthew C. Stamm. "Do Deepfakes Feel Emotions? A Semantic Approach to Detecting Deepfakes Via Emotional Inconsistencies". W 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2021. http://dx.doi.org/10.1109/cvprw53098.2021.00112.
Pełny tekst źródłaHe, Yang, Ning Yu, Margret Keuper i Mario Fritz. "Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis". W Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/349.
Pełny tekst źródła