Gotowa bibliografia na temat „DESIGN FOR STRENGTH”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „DESIGN FOR STRENGTH”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "DESIGN FOR STRENGTH"
Kress, G., P. Naeff, M. Niedermeier i P. Ermanni. "Onsert strength design". International Journal of Adhesion and Adhesives 24, nr 3 (czerwiec 2004): 201–9. http://dx.doi.org/10.1016/j.ijadhadh.2003.09.007.
Pełny tekst źródłaHARAGA, Kosuke. "A Concept of Specified Design Strength and Allowable Design Strength in the Strength Design of Adhesively Bonded Joints." Journal of The Adhesion Society of Japan 50, nr 2 (2014): 53–58. http://dx.doi.org/10.11618/adhesion.50.53.
Pełny tekst źródłaSinha, Dr Deepa A. "Compressive Strength of Concrete using Different Mix Design Methods". Indian Journal of Applied Research 4, nr 7 (1.10.2011): 216–17. http://dx.doi.org/10.15373/2249555x/july2014/66.
Pełny tekst źródłaBhat, Rayees Ahmad, i Mr Misba Danish. "Design of High Strength Concrete Using Superplastisizer and Stone Dust". International Journal of Trend in Scientific Research and Development Volume-2, Issue-5 (31.08.2018): 529–47. http://dx.doi.org/10.31142/ijtsrd15867.
Pełny tekst źródłaRusso, G. "Design shear strength formula for high strength concrete beams". Materials and Structures 37, nr 274 (17.10.2004): 680–88. http://dx.doi.org/10.1617/14016.
Pełny tekst źródłaRusso, G., G. Somma i P. Angeli. "Design shear strength formula for high strength concrete beams". Materials and Structures 37, nr 10 (grudzień 2004): 680–88. http://dx.doi.org/10.1007/bf02480513.
Pełny tekst źródłaKim, Dae Geon. "Development of High-Strength Concrete Mixed Design System Using Artificial Intelligence". Webology 19, nr 1 (20.01.2022): 4268–85. http://dx.doi.org/10.14704/web/v19i1/web19281.
Pełny tekst źródłaMurakami, Yukitaka. "Product Liability and Strength Design". Journal of the Society of Mechanical Engineers 98, nr 925 (1995): 986–90. http://dx.doi.org/10.1299/jsmemag.98.925_986.
Pełny tekst źródłaYoshida, Takashi, i Masaru Ishikawa. "Design of strength for plastic". Proceedings of The Computational Mechanics Conference 2004.17 (2004): 127–28. http://dx.doi.org/10.1299/jsmecmd.2004.17.127.
Pełny tekst źródłaHsu, Wei Ting, Dung Myau Lue i Chen Y. Chang. "An Investigation into the Strength of Concrete-Filled Tubes". Applied Mechanics and Materials 284-287 (styczeń 2013): 1208–14. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.1208.
Pełny tekst źródłaRozprawy doktorskie na temat "DESIGN FOR STRENGTH"
Eizadjou, Mehdi. "Design of Advanced High Strength Steels". Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/17315.
Pełny tekst źródłaSoutsos, Marios Nicou. "Mix design, workability heat evolution and strength development of high strength concrete". Thesis, University College London (University of London), 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308062.
Pełny tekst źródłaCladera, Bohigas Antoni. "Shear design of reinforced high-strength concrete beams". Doctoral thesis, Universitat Politècnica de Catalunya, 2003. http://hdl.handle.net/10803/6155.
Pełny tekst źródłaEl objetivo principal de este trabajo es contribuir al avance del conocimiento del comportamiento frente a la rotura por cortante de vigas de hormigón de alta resistencia. Para ello, y en primer lugar, se ha llevado a cabo una extensa revisión del estado actual del conocimiento de la resistencia a cortante, tanto para hormigón convencional como para hormigón de alta resistencia, así como una profunda investigación de campañas experimentales anteriores.
Se ha realizado una campaña experimental sobre vigas de hormigón de alta resistencia sometidas a flexión y cortante. La resistencia a compresión del hormigón de las vigas variaba entre 50 y 87 MPa. Las principales variables de diseño eran la cuantía de armadura longitudinal y transversal. Los resultados obtenidos experimentalmente han sido analizados para estudiar la influencia de las distintas variables en función de la resistencia a compresión del hormigón.
Con el objetivo de tener en cuenta, no sólo los resultados de nuestros ensayos, sino también la gran cantidad de información disponible en la bibliografía técnica, se ha preparado una base de datos con vigas de hormigón convencional y de alta resistencia a partir del banco de datos de la Universidad de Illinois. Los resultados empíricos han sido comparados con los cortantes últimos calculados según la Instrucción EHE, las especificaciones AASHTO LRFD, el Código ACI 318-99 y el programa Response-2000, basado en la teoría modificada del campo de compresiones.
Se han construido dos Redes Neuronales Artificiales (RNA) para predecir la resistencia a cortante en base a la gran cantidad de resultados experimentales. La principal característica de las RNA es su habilidad para aprender, mediante el ajuste de pesos internos, incluso cuando los datos de entrada y salida presentan un cierto nivel de ruido. Con los resultados de la RNA se ha realizado un análisis paramétrico de cada variable que afecta la resistencia última a cortante.
Se han propuesto nuevas expresiones que tienen el cuenta el comportamiento observado para el diseño frente al esfuerzo cortante de vigas tanto de hormigón convencional como de alta resistencia con y sin armadura a cortante, así como una nueva ecuación para la determinación de la armadura mínima a cortante. Las nuevas expresiones presentan resultados que se ajustan mejor a los resultados experimentales que los obtenidos mediante la utilización de las normativas vigentes.
Finalmente se han planteado varias sugerencias de futuras líneas de trabajo, que son resultado de la propia evolución del conocimiento sobre el tema de estudio durante el desarrollo de esta tesis.
Although High-Strength Concrete has been increasingly used in the construction industry during the last few years, current Spanish Structural Concrete code of practice (EHE) only covers concrete of strengths up to 50 MPa. An increase in the strength of concrete is directly associated with an improvement in most of its properties, in special the durability, but this also produces an increase in its brittleness and smoother crack surfaces which affects significantly the shear strength.
The aim of this research is to enhance the understanding of the behaviour of high-strength concrete beams with and without web reinforcement failing in shear. In order to achieve this objective, an extensive review of the state-of-the-art in shear strength for both normal-strength and high-strength concrete beams was made, as well as in-depth research into previous experimental campaigns.
An experimental programme involving the testing of eighteen high-strength beam specimens under a central point load was performed. The concrete compressive strength of the beams at the age of the tests ranged from 50 to 87 MPa. Primary design variables were the amount of shear and longitudinal reinforcement. The results obtained experimentally were analysed to study the influence of those parameters related to the concrete compressive strength.
With the aim of taking into account, in addition to the results of our tests, the large amount of information available, a large database was assembled based on the University of Illinois Sheardatabank for normal-strength and high-strength concrete beams. These test results were compared with failure shear strengths predicted by the EHE Code, the 2002 Final Draft of EuroCode 2, the AASHTO LRFD Specifications, the ACI Code 318-99, and Response-2000 program, a computer program based on the modified compression field theory.
Furthermore, two Artificial Neural Networks (ANN) were developed to predict the shear strength of reinforced beams based on the database beam specimens. An ANN is a computational tool made up of a number of simple, highly-interconnected processing elements that constitute a network. The main feature of an ANN is its ability to learn, by means of adjusting internal weights, even when the input and output data present a degree of noise. Based on the ANN results, a parametric study was carried out to study the influence of each parameter affecting the failure shear strength.
New expressions are proposed, taking into account the observed behaviour for the design of high-strength and normal-strength reinforced concrete beams with and without web reinforcement. A new equation is given for the amount of minimum reinforcement as well. The new expressions correlate with the empirical tests better than any current code of practice.
Finally, as a natural corollary to the evolution of our understanding of this field, some recommendations for future studies are made.
Wilson, R. C. "Welded airframes : static strength, structural design and analysis". Thesis, Queen's University Belfast, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.546430.
Pełny tekst źródłaVennapusa, Siva Koti Reddy. "Design of bi-adhesive joint for optimal strength". Thesis, Högskolan i Skövde, Institutionen för ingenjörsvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-16675.
Pełny tekst źródłaWang, Jie. "Behaviour and design of high strength steel structures". Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/43758.
Pełny tekst źródłaReis, Jonathan M. "Structural Concrete Design with High-Strength Steel Reinforcement". University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1277124990.
Pełny tekst źródłaKhurshid, Mansoor. "Static and fatigue analyses of welded steel structures : some aspects towards lightweight design". Doctoral thesis, KTH, Lättkonstruktioner, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-200829.
Pełny tekst źródłaQC 20170206
Domingo, Eric Ray. "An introduction to Autoclaved Aerated Concrete including design requirements using strength design". Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/543.
Pełny tekst źródłaPeng, Jun, i 彭军. "Strain gradient effects on flexural strength and ductility design of normal-strength RC beams and columns". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B48329630.
Pełny tekst źródłapublished_or_final_version
Civil Engineering
Doctoral
Doctor of Philosophy
Książki na temat "DESIGN FOR STRENGTH"
McIntosh, G. Design stressing: Basic strength calculations for structural design. [Great Britain?]: [G. McIntosh?], 1988.
Znajdź pełny tekst źródłaCook, Ronald A. Strength design of anchorage to concrete. Skokie, Ill: Portland Cement Association, 1999.
Znajdź pełny tekst źródłaDeterminate structures: Statics, strength, analysis, design. Albany: Delmar Publishers, 1996.
Znajdź pełny tekst źródłaP, Walker K., i United States. National Aeronautics and Space Administration., red. Steady-state and transient zener parameters in viscoplasticity: Drag strength versus yield strength. [Washington, DC]: National Aeronautics and Space Administration, 1990.
Znajdź pełny tekst źródłaFreed, Alan David. Steady-state and transient zener parameters in viscoplasticity: Drag strength versus yield strength. [Washington, DC]: National Aeronautics and Space Administration, 1990.
Znajdź pełny tekst źródłaGreat Britain. Department of Trade and Industry. Strength data for design safety: Phase 1. London: DTI, 2000.
Znajdź pełny tekst źródłaGreat Britain. Department of Trade and Industry. Strength data for design safety: Phase 2. London: DTI, 2002.
Znajdź pełny tekst źródłaAmerican Society of Civil Engineers. i United States. Army. Corps of Engineers., red. Strength design for reinforced-concrete hydraulic structures. New York, N.Y: ASCE Press, 1993.
Znajdź pełny tekst źródłaGeorge C. Marshall Space Flight Center., red. Root-sum-square structural strength verification approach. [Marshall Space Flight Center, Ala.]: National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 1994.
Znajdź pełny tekst źródłaGeorge C. Marshall Space Flight Center., red. Root-sum-square structural strength verification approach. [Marshall Space Flight Center, Ala.]: National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 1994.
Znajdź pełny tekst źródłaCzęści książek na temat "DESIGN FOR STRENGTH"
Walser, Martin G. "Empirical design". W Brand Strength, 155–79. Wiesbaden: Deutscher Universitätsverlag, 2004. http://dx.doi.org/10.1007/978-3-322-81629-0_7.
Pełny tekst źródłaCissik, John. "Program Design". W Strength and Conditioning, 149–75. Second edition. | Abingdon, Oxon ; New York : Routledge, [2020]: Routledge, 2019. http://dx.doi.org/10.4324/9780429026546-8.
Pełny tekst źródłaOkumoto, Yasuhisa, Yu Takeda, Masaki Mano i Tetsuo Okada. "Torsional Strength". W Design of Ship Hull Structures, 417–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88445-3_22.
Pełny tekst źródłaOkumoto, Yasuhisa, Yu Takeda, Masaki Mano i Tetsuo Okada. "Strength Evaluation". W Design of Ship Hull Structures, 33–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88445-3_3.
Pełny tekst źródłaBallio, Giulio. "Design for Strength (Stability)". W Second Century of the Skyscraper, 837–46. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-6581-5_72.
Pełny tekst źródłaXiao, Yan. "Design Strength of Glubam". W Engineered Bamboo Structures, 121–38. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003204497-4.
Pełny tekst źródłaSerrano, Nathan, i Andrew J. Galpin. "Program design". W Conditioning for Strength and Human Performance, 356–69. Third edition. | New York, NY : Routledge, 2018.: Routledge, 2018. http://dx.doi.org/10.4324/9781315438450-16.
Pełny tekst źródłaOkumoto, Yasuhisa, Yu Takeda, Masaki Mano i Tetsuo Okada. "Transverse Strength of Ship". W Design of Ship Hull Structures, 387–415. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88445-3_21.
Pełny tekst źródłaSmardzewski, Jerzy. "Stiffness and Strength Analysis of Skeletal Furniture". W Furniture Design, 319–455. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19533-9_6.
Pełny tekst źródłaSmardzewski, Jerzy. "Stiffness and Strength Analysis of Case Furniture". W Furniture Design, 457–571. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19533-9_7.
Pełny tekst źródłaStreszczenia konferencji na temat "DESIGN FOR STRENGTH"
"Design of High-Strength Concrete Columns for Strength and Ductility". W SP-213: The Art and Science of Structural Concrete Design. American Concrete Institute, 2003. http://dx.doi.org/10.14359/12747.
Pełny tekst źródłaBingham, Jesse, John Erickson, Gaurav Singh i Flemming Andersen. "Industrial strength refinement checking". W 2009 Formal Methods in Computer-Aided Design (FMCAD). IEEE, 2009. http://dx.doi.org/10.1109/fmcad.2009.5351123.
Pełny tekst źródłaDoyle, Keith B., i Mark A. Kahan. "Design strength of optical glass". W Optical Science and Technology, SPIE's 48th Annual Meeting, redaktor Alson E. Hatheway. SPIE, 2003. http://dx.doi.org/10.1117/12.506610.
Pełny tekst źródła"Behavior and Design of High-Strength RC Walls". W SP-176: High-Strength Concrete in Seismic Regions. American Concrete Institute, 1998. http://dx.doi.org/10.14359/5903.
Pełny tekst źródłaObeidat, H. A., R. A. Abd-Alhameed, J. M. Noras, S. Zhu, T. Ghazaany, N. T. Ali i E. Elkhazmi. "Indoor localization using received signal strength". W 2013 Design and Test Symposium (IDT). IEEE, 2013. http://dx.doi.org/10.1109/idt.2013.6727138.
Pełny tekst źródłaSchaefer, Peter, Helmut Rudolph i Wolfgang Schwarz. "Digital Man Models and Physical Strength – A New Approach in Strength Simulation". W Digital Human Modeling For Design And Engineering Conference And Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2000. http://dx.doi.org/10.4271/2000-01-2168.
Pełny tekst źródła"Design Applications of High-Strength Concrete in Seismic Regions". W SP-176: High-Strength Concrete in Seismic Regions. American Concrete Institute, 1998. http://dx.doi.org/10.14359/5912.
Pełny tekst źródłaDu, Quhu, Jia Li, Yi Wang, Liyang Xie i Fei Zhao. "Strength reliability analysis of axial-symmetric vectoring exhaust nozzle mechanism considering strength degradation". W Third International Conference on Mechanical Design and Simulation (MDS 2023), redaktorzy Mohamed Arezki Mellal i Yunqing Rao. SPIE, 2023. http://dx.doi.org/10.1117/12.2682087.
Pełny tekst źródłaAnderson, M., i M. Anderson. "Design of panels having postbuckling strength". W 38th Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-1240.
Pełny tekst źródła"Design of High-Strength Concrete Columns". W SP-128: Evaluation and Rehabilitation of Concrete Structures and Innovations in Design. American Concrete Institute, 1991. http://dx.doi.org/10.14359/3206.
Pełny tekst źródłaRaporty organizacyjne na temat "DESIGN FOR STRENGTH"
H. KUNG i ET AL. OPTIMUM DESIGN OF ULTRAHIGH STRENGTH NANOLAYERED COMPOSITES. Office of Scientific and Technical Information (OSTI), październik 2000. http://dx.doi.org/10.2172/766220.
Pełny tekst źródłaDuthinh, Dat, i Nicholas J. Carino. Shear design of high-strength concrete beams:. Gaithersburg, MD: National Institute of Standards and Technology, 1996. http://dx.doi.org/10.6028/nist.ir.5870.
Pełny tekst źródłaKoglin, Johnathon D. Strength-Stabilized Rayleigh-Taylor Growth Experiment Design Calculations. Office of Scientific and Technical Information (OSTI), kwiecień 2018. http://dx.doi.org/10.2172/1459140.
Pełny tekst źródłaWilkowski i Eiber. L51704 Design Guideline for High-Strength Pipe Fittings. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), styczeń 1994. http://dx.doi.org/10.55274/r0010320.
Pełny tekst źródłaUkhande, Manoj, Vijaykumar Khasnis, Santosh Kumar, Raveendra Parvatrao i Girish Tilekar. Crankshaft Design Re-Engineering for Better Bending Fatigue Strength. Warrendale, PA: SAE International, wrzesień 2013. http://dx.doi.org/10.4271/2013-01-2436.
Pełny tekst źródłaWoodson, Stanley C., i William A. Price. Improved Strength Design of Reinforced Concrete Hydraulic Structures - Research Support. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 1992. http://dx.doi.org/10.21236/ada251470.
Pełny tekst źródłaFuglem. L52034 Software for Estimating the Lifetime Cost of High Strength High Design Factor Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), kwiecień 2003. http://dx.doi.org/10.55274/r0011176.
Pełny tekst źródłaLynch, C., i J. Charest. Design of a gun system for in-situ compressive strength measurements. Office of Scientific and Technical Information (OSTI), listopad 1989. http://dx.doi.org/10.2172/6922835.
Pełny tekst źródłaTyson. L52337 Weld Design Testing and Assessment Procedures for High Strength Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), grudzień 2011. http://dx.doi.org/10.55274/r0010448.
Pełny tekst źródłaRuggles, M. B., G. T. Yahr i R. L. Battiste. Static properties and multiaxial strength criterion for design of composite automotive structures. Office of Scientific and Technical Information (OSTI), listopad 1998. http://dx.doi.org/10.2172/290934.
Pełny tekst źródła