Gotowa bibliografia na temat „Denoisers”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Denoisers”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Denoisers"
Gu, Jeongmin, Jose A. Iglesias-Guitian i Bochang Moon. "Neural James-Stein Combiner for Unbiased and Biased Renderings". ACM Transactions on Graphics 41, nr 6 (30.11.2022): 1–14. http://dx.doi.org/10.1145/3550454.3555496.
Pełny tekst źródłaZheng, Shaokun, Fengshi Zheng, Kun Xu i Ling-Qi Yan. "Ensemble denoising for Monte Carlo renderings". ACM Transactions on Graphics 40, nr 6 (grudzień 2021): 1–17. http://dx.doi.org/10.1145/3478513.3480510.
Pełny tekst źródłaHofmann, Nikolai, Jon Hasselgren i Jacob Munkberg. "Joint Neural Denoising of Surfaces and Volumes". Proceedings of the ACM on Computer Graphics and Interactive Techniques 6, nr 1 (12.05.2023): 1–16. http://dx.doi.org/10.1145/3585497.
Pełny tekst źródłaHan, Kyu Beom, Olivia G. Odenthal, Woo Jae Kim i Sung-Eui Yoon. "Pixel-wise Guidance for Utilizing Auxiliary Features in Monte Carlo Denoising". Proceedings of the ACM on Computer Graphics and Interactive Techniques 6, nr 1 (12.05.2023): 1–19. http://dx.doi.org/10.1145/3585505.
Pełny tekst źródłaLiu, Shuaiqi, Tong Liu, Lele Gao, Hailiang Li, Qi Hu, Jie Zhao i Chong Wang. "Convolutional Neural Network and Guided Filtering for SAR Image Denoising". Remote Sensing 11, nr 6 (23.03.2019): 702. http://dx.doi.org/10.3390/rs11060702.
Pełny tekst źródłaChoi, Joon Hee, Omar A. Elgendy i Stanley H. Chan. "Optimal Combination of Image Denoisers". IEEE Transactions on Image Processing 28, nr 8 (sierpień 2019): 4016–31. http://dx.doi.org/10.1109/tip.2019.2903321.
Pełny tekst źródłaMeng, Xiyan, i Fang Zhuang. "A New Boosting Algorithm for Shrinkage Curve Learning". Mathematical Problems in Engineering 2022 (15.04.2022): 1–14. http://dx.doi.org/10.1155/2022/6339758.
Pełny tekst źródłaLiu, Yukun, Bowen Wan, Daming Shi i Xiaochun Cheng. "Generative Recorrupted-to-Recorrupted: An Unsupervised Image Denoising Network for Arbitrary Noise Distribution". Remote Sensing 15, nr 2 (6.01.2023): 364. http://dx.doi.org/10.3390/rs15020364.
Pełny tekst źródłaGalande, Ashwini S., Vikas Thapa, Hanu Phani Ram Gurram i Renu John. "Untrained deep network powered with explicit denoiser for phase recovery in inline holography". Applied Physics Letters 122, nr 13 (27.03.2023): 133701. http://dx.doi.org/10.1063/5.0144795.
Pełny tekst źródłaKim, Bong-Hyun, i S. Madhavi. "Method for Quantum Denoisers Using Convolutional Neural Network". Computational Intelligence and Neuroscience 2022 (6.10.2022): 1–7. http://dx.doi.org/10.1155/2022/4885897.
Pełny tekst źródłaRozprawy doktorskie na temat "Denoisers"
Bal, Shamit. "Image compression with denoised reduced-search fractal block coding". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq23210.pdf.
Pełny tekst źródłaKharboutly, Anas Mustapha. "Identification du système d'acquisition d'images médicales à partir d'analyse du bruit". Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT341/document.
Pełny tekst źródłaMedical image processing aims to help the doctors to improve the diagnosis process. Computed Tomography (CT) Scanner is an imaging medical device used to create cross-sectional 3D images of any part of the human body. Today, it is very important to secure medical images during their transmission, storage, visualization and sharing between several doctors. For example, in image forensics, a current problem consists of being able to identify an acquisition system from only digital images. In this thesis, we present one of the first analysis of CT-Scanner identification problem. We based on the camera identification methods to propose a solution for such kind of problem. It is based on extracting a sensor noise fingerprint of the CT-Scanner device. The objective then is to detect its presence in any new tested image. To extract the noise, we used a wavelet-based Wiener denoising filter. Then, we depend on the properties of medical images to propose advanced solutions for CT-Scanner identification. These solutions are based on new conceptions in the medical device fingerprint that are the three dimension fingerprint and the three layers one. To validate our work, we applied our experiments on multiple real data images of multiple CT-Scanner devices. Finally, our methods that are robust, give high identification accuracy. We were able to identify the acquisition CT-Scanner device and the acquisition axis
Tsai, Shu-Jen Steven. "Study of Global Power System Frequency Behavior Based on Simulations and FNET Measurements". Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/28303.
Pełny tekst źródłaPh. D.
Risi, Stefano. "Un metodo automatico per la ricostruzione di immagini astronomiche". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14128/.
Pełny tekst źródłaKim, Jong-Hoon. "Compressed sensing and finite rate of innovation for efficient data acquisition of quantitative acoustic microscopy images". Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30225.
Pełny tekst źródłaQuantitative acoustic microscopy (QAM) is a well-accepted modality for forming 2D parameter maps making use of mechanical properties of soft tissues at microscopic scales. In leading edge QAM studies, the sample is raster-scanned (spatial step size of 2µm) using a 250 MHz transducer resulting in a 3D RF data cube, and each RF signal for each spatial location is processed to obtain acoustic parameters, e.g., speed of sound or acoustic impedance. The scanning time directly depends on the sample size and can range from few minutes to tens of minutes. In order to maintain constant experimental conditions for the sensitive thin sectioned samples, the scanning time is an important practical issue. To deal with the current challenge, we propose the novel approach inspired by compressed sensing (CS) and finite rate of innovation (FRI). The success of CS relies on the sparsity of data under consideration, incoherent measurement and optimization technique. On the other hand, the idea behind FRI is supported by a signal model fully characterized as a limited number of parameters. From this perspective, taking into account the physics leading to data acquisition of QAM system, the QAM data can be regarded as an adequate application amenable to the state of the art technologies aforementioned. However, when it comes to the mechanical structure of QAM system which does not support canonical CS measurement manners on the one hand, and the compositions of the RF signal model unsuitable to existing FRI schemes on the other hand, the advanced frameworks are still not perfect methods to resolve the problems that we are facing. In this thesis, to overcome the limitations, a novel sensing framework for CS is presented in spatial domain: a recently proposed approximate message passing (AMP) algorithm is adapted to account for the underlying data statistics of samples sparsely collected by proposed scanning patterns. In time domain, as an approach for achieving an accurate recovery from a small set of samples of QAM RF signals, we employ sum of sincs (SoS) sampling kernel and autoregressive (AR) model estimator. The spiral scanning manner, introduced as an applicable sensing technique to QAM system, contributed to the significant reduction of the number of spatial samples when reconstructing speed of sound images of a human lymph node.[...]
Contato, Welinton Andrey. "Análise e restauração de vídeos de Microscopia Eletrônica de Baixa Energia". Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-04012017-143212/.
Pełny tekst źródłaLow Energy Electronic Microscopy (LEEM) is a recent and powerful surface science image modality prone to considerable amounts of degradations, such as noise and blurring. Still not fully addressed in the literature, this worked aimed at analysing and identifying the sources of degradation in LEEM videos, as well as the adequacy of existing noise reduction and deblurring techniques for LEEM data. This work also presented two new noise reduction techniques aimed at preserving texture and small details. Our analysis has revealed that LEEM images exhibit a large amount and variety of noises, with Gaussian noise being the most frequent. To handle the deblurring issue, the Point Spread Function (PSF) for the microscopeused in the experiments has also been estimated. This work has also studied the combination of deblurring and denoising techniques for Gaussian noise. Results have shown that non-local techniques such as Non-Local Means (NLM) and Block-Matching 3-D (BM3D) are more adequate for filtering LEEM images, while preserving discontinuities. We have also shown that some deblurring techniques are not suitable for LEEM images, except the RichardsonLucy (RL) approach which coped with most of the blur without the addition of extra degradation. The undesirable removal of small structures and texture by the existing denoising techniques encouraged the development of two novel Gaussian denoising techniques (NLM3D-LBP-MSB and NLM3D-LBP-Adaptive) which exhibited good results for images with a large amount of texture. However, BM3D was superior for images with large homogeneous regions. Quantitative experiments have been carried out for synthetic images. For real LEEM images, a qualitative analysis has been conducted in which observers visually assessed restoration results for existing techniques and also the two proposed ones. This experiment has shown that non-local denoising methodswere superior, especially when combined with theRL method. The proposed methods produced good results, but were out performed by NLM and BM3D. This work has shown that non-local denoising techniques are more adequate for LEEM data. Also, theRL technique is very efficient for deblurring purposes.
Gavaskar, Ruturaj G. "On Plug-and-Play Regularization using Linear Denoisers". Thesis, 2022. https://etd.iisc.ac.in/handle/2005/5973.
Pełny tekst źródłaNair, Pravin. "Provably Convergent Algorithms for Denoiser-Driven Image Regularization". Thesis, 2022. https://etd.iisc.ac.in/handle/2005/5887.
Pełny tekst źródłaYuan, Ming-pin, i 袁鳴彬. "Adaptive DeNoise Filter". Thesis, 2010. http://ndltd.ncl.edu.tw/handle/61007015843867316761.
Pełny tekst źródła雲林科技大學
電機工程系碩士班
98
In the world of multimedia, digital images are often degraded by noise introduced from transmission errors and image acquisition storage devices. The perception and recognition of human visualization is therefore severely influenced. In order to stabilize the image preprocessing systems, the removal of the above mentioned noise becomes an important issue in this application area. In this thesis, we propose an adaptive wide range noise density method, which is called the Adaptive DeNoise Filter (AND). The main focus of this work is to remove salt-and pepper noise to obtain better image quality of images. An image denoise filter performs two steps: the first step is using Lifting-based Discrete Wavelet Transform (LDWT) and Adaptive Median Filter (AMF) to obtain the high noise density for next step. At the second stage, we use the adaptive search window median filtering to remove noise by using the noise information obtained in the first step. Based on the algorithm, we can find the noise density to adjust window sizes for achieving better image restoration performance. Experimental results show that the proposed method can recover the test image for noise densities from 5% to 90%. The average PSNR of 25.05 dB satisfies the sensitivity of human visual perception.
"Image cosegmentation and denoise". 2012. http://library.cuhk.edu.hk/record=b5549125.
Pełny tekst źródła在共同分割模型上,我们发现对象对应可以为前景统计估计提供有用的信息。我们的方法可以处理极具挑战性的场景,如变形,角度的变化和显着不同的视角和尺度。此外,我们研究了一种新的能量最小化模型,可以同时处理多个图像。真实和基准数据的定性和定量实验证明该方法的有效性。
另一方面,噪音始终和高频图像结构是紧耦合的,从而使得减少噪音非常很难。在我们的降噪模型中,我们建议稍微使图像光学离焦,以减少图像和噪声的耦合。这使得我们能更有效地降低噪音,随后恢复失焦。我们的分析显示,这是可能的,并且用许多例子证明我们的技术,其中包括低光图像。
We present two novel methods to tackle low level computer vision tasks,i.e., image cosegmentation and denoise .
In our cosegmentationmodel, we discover object correspondence canprovide useful information for foreground statistical estimation. Ourmethod can handle extremely challenging scenarios such as deformation, perspective changes and dramatically different viewpoints/scales. In addition, we develop a novel energy minimization model that can handlemultiple images. Experiments on real and benchmark data qualitatively and quantitatively demonstrate the effectiveness of the approach.
One the other hand, noise is always tightly coupled with high-frequencyimage structure, making noise reduction generally very difficult. In ourdenoise model, we propose slightly optically defocusing the image in orderto loosen this noise-image structure coupling. This allows us to more effectively reduce noise and subsequently restore the small defocus. Weanalytically show how this is possible, and demonstrate our technique on a number of examples that include low-light images.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Qin, Zenglu.
Thesis (M.Phil.)--Chinese University of Hong Kong, 2012.
Includes bibliographical references (leaves 64-71).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstracts also in Chinese.
Abstract --- p.i
Acknowledgement --- p.ii
Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- Motivation and Objectives --- p.1
Chapter 1.1.1 --- Cosegmentation --- p.1
Chapter 1.1.2 --- Image Denoise --- p.4
Chapter 1.2 --- Thesis Outline --- p.7
Chapter 2 --- Background --- p.8
Chapter 2.1 --- Cosegmentation --- p.8
Chapter 2.2 --- Image Denoise --- p.10
Chapter 3 --- Cosegmentation of Multiple Deformable Objects --- p.12
Chapter 3.1 --- Related Work --- p.12
Chapter 3.2 --- Object Corresponding Cosegmentation --- p.13
Chapter 3.3 --- Importance Map with Object Correspondence --- p.15
Chapter 3.3.1 --- Feature Importance Map --- p.16
Chapter 3.3.2 --- Importance Energy E[subscript i](xp) --- p.20
Chapter 3.4 --- Experimental Result --- p.20
Chapter 3.4.1 --- Two-Image Cosegmentation --- p.21
Chapter 3.4.2 --- ETHZ Toys Dataset --- p.22
Chapter 3.4.3 --- More Results --- p.24
Chapter 3.5 --- Summary --- p.27
Chapter 4 --- Using Optical Defocus to Denoise --- p.28
Chapter 4.1 --- Related Work --- p.29
Chapter 4.2 --- Noise Analysis --- p.30
Chapter 4.3 --- Noise Estimation with Focal Blur --- p.33
Chapter 4.3.1 --- Noise Estimation with a Convolution Model --- p.33
Chapter 4.3.2 --- Determining λ --- p.41
Chapter 4.4 --- Final Deconvolution and Error Analysis --- p.43
Chapter 4.5 --- Implementation --- p.45
Chapter 4.6 --- Quantitative Evaluation --- p.47
Chapter 4.7 --- More Experimental Results --- p.53
Chapter 4.8 --- Summary --- p.56
Chapter 5 --- Conclusion --- p.62
Bibliography --- p.64
Książki na temat "Denoisers"
Behringer, Uli. Denoiser: The audio interactive noise reduction system, Model SNR 2000. Wyd. 2. Willich-Münchheide: Behringer Spezielle Studiotechnik, 1995.
Znajdź pełny tekst źródłaLiu, Peter Junteng. Using Gaussian process regression to denoise images and remove artefacts from microarray data. 2007.
Znajdź pełny tekst źródłaCzęści książek na temat "Denoisers"
Stergiopoulou, Vasiliki, Subhadip Mukherjee, Luca Calatroni i Laure Blanc-Féraud. "Fluctuation-Based Deconvolution in Fluorescence Microscopy Using Plug-and-Play Denoisers". W Lecture Notes in Computer Science, 498–510. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-31975-4_38.
Pełny tekst źródłaZhdan, Dmitry. "ReBLUR: A Hierarchical Recurrent Denoiser". W Ray Tracing Gems II, 823–44. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-7185-8_49.
Pełny tekst źródłaGimel’farb, Georgy. "Adaptive Context for a Discrete Universal Denoiser". W Lecture Notes in Computer Science, 477–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-27868-9_51.
Pełny tekst źródłaCha, Sungmin, i Taesup Moon. "UDLR Convolutional Network for Adaptive Image Denoiser". W Robot Intelligence Technology and Applications, 55–61. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7780-8_5.
Pełny tekst źródłaRepala, Hari Kishan, Aneeta Christopher i P. V. Sudeep. "Blind Image Restoration with CNN Denoiser Prior". W Proceedings of International Conference on Data Science and Applications, 737–48. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5348-3_58.
Pełny tekst źródłaBuchholz, Tim-Oliver, Mangal Prakash, Deborah Schmidt, Alexander Krull i Florian Jug. "DenoiSeg: Joint Denoising and Segmentation". W Computer Vision – ECCV 2020 Workshops, 324–37. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-66415-2_21.
Pełny tekst źródłaDogra, Manmohan, Saumya Borwankar i Jayashree Domala. "Noise Removal from Audio Using CNN and Denoiser". W Advances in Speech and Music Technology, 37–48. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6881-1_4.
Pełny tekst źródłaGao, Yushu, Lin Zhu, Hao-Dong Zhu, Yong Gan i Li Shang. "Extract Features Using Stacked Denoised Autoencoder". W Intelligent Computing in Bioinformatics, 10–14. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09330-7_2.
Pełny tekst źródłaMa, Mengke, Dongqing Li, Shaohua Wu i Qinyu Zhang. "Feature-Aware Adaptive Denoiser-Selection for Compressed Image Reconstruction". W Lecture Notes in Electrical Engineering, 537–45. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0187-6_64.
Pełny tekst źródłaSingh, Gurprem, Ajay Mittal i Naveen Aggarwal. "Deep Convolution Neural Network Based Denoiser for Mammographic Images". W Communications in Computer and Information Science, 177–87. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9939-8_16.
Pełny tekst źródłaStreszczenia konferencji na temat "Denoisers"
Bled, Clement, i Francois Pitie. "Assessing Advances in Real Noise Image Denoisers". W CVMP '22: European Conference on Visual Media Production. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3565516.3565524.
Pełny tekst źródłaAl-Shabili, Abdullah H., Hassan Mansour i Petros T. Boufounos. "Learning Plug-And-Play Proximal Quasi-Newton Denoisers". W ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020. http://dx.doi.org/10.1109/icassp40776.2020.9054537.
Pełny tekst źródłaLi, Yanghao, Bichuan Guo, Jiangtao Wen, Zhen Xia, Shan Liu i Yuxing Han. "Learning Model-Blind Temporal Denoisers without Ground Truths". W ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021. http://dx.doi.org/10.1109/icassp39728.2021.9413606.
Pełny tekst źródłaLi, Yuxiang, Bo Zhang i Raoul Florent. "Understanding neural-network denoisers through an activation function perspective". W 2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017. http://dx.doi.org/10.1109/icip.2017.8296827.
Pełny tekst źródłaReddy K., Pavan Kumar, i Kunal N. Chaudhury. "Learning Iteration-Dependent Denoisers for Model-Consistent Compressive Sensing". W 2019 IEEE International Conference on Image Processing (ICIP). IEEE, 2019. http://dx.doi.org/10.1109/icip.2019.8803169.
Pełny tekst źródłaBigdeli, Siavash, David Honzátko, Sabine Süsstrunk i L. Dunbar. "Image Restoration using Plug-and-Play CNN MAP Denoisers". W 15th International Conference on Computer Vision Theory and Applications. SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0008990700850092.
Pełny tekst źródłaRio, Jules, Olivier Alata, Fabien Momey i Christophe Ducottet. "Leveraging end-to-end denoisers for denoising periodic signals". W 2021 29th European Signal Processing Conference (EUSIPCO). IEEE, 2021. http://dx.doi.org/10.23919/eusipco54536.2021.9615932.
Pełny tekst źródłaOrdentlich, Erik. "Denoising as well as the best of any two denoisers". W 2013 IEEE International Symposium on Information Theory (ISIT). IEEE, 2013. http://dx.doi.org/10.1109/isit.2013.6620452.
Pełny tekst źródłaTalegaonkar, Chinmay, i Ajit Rajwade. "PERFORMANCE BOUNDS FOR TRACTABLE POISSON DENOISERS WITH PRINCIPLED PARAMETER TUNING". W 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2018. http://dx.doi.org/10.1109/globalsip.2018.8646382.
Pełny tekst źródłaYan, Hanshu, Jingfeng Zhang, Jiashi Feng, Masashi Sugiyama i Vincent Y. F. Tan. "Towards Adversarially Robust Deep Image Denoising". W Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/211.
Pełny tekst źródła