Gotowa bibliografia na temat „Demand prediction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Demand prediction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Demand prediction"
Thiagarajan, Rajesh, Mustafizur Rahman, Don Gossink i Greg Calbert. "A Data Mining Approach To Improve Military Demand Forecasting". Journal of Artificial Intelligence and Soft Computing Research 4, nr 3 (1.07.2014): 205–14. http://dx.doi.org/10.1515/jaiscr-2015-0009.
Pełny tekst źródłaTian, Wen, Ying Zhang, Yinfeng Li i Huili Zhang. "Probabilistic Demand Prediction Model for En-Route Sector". International Journal of Computer Theory and Engineering 8, nr 6 (grudzień 2016): 495–99. http://dx.doi.org/10.7763/ijcte.2016.v8.1095.
Pełny tekst źródłaChen, Zhiju, Kai Liu i Tao Feng. "Examine the Prediction Error of Ride-Hailing Travel Demands with Various Ignored Sparse Demand Effects". Journal of Advanced Transportation 2022 (12.04.2022): 1–11. http://dx.doi.org/10.1155/2022/7690309.
Pełny tekst źródłaLee, Eunkyeong, Hosik Choi i Do-Gyeong Kim. "PGDRT: Prediction Demand Based on Graph Convolutional Network for Regional Demand-Responsive Transport". Journal of Advanced Transportation 2023 (5.01.2023): 1–13. http://dx.doi.org/10.1155/2023/7152010.
Pełny tekst źródłaKim, Sujae, Sangho Choo, Gyeongjae Lee i Sanghun Kim. "Predicting Demand for Shared E-Scooter Using Community Structure and Deep Learning Method". Sustainability 14, nr 5 (23.02.2022): 2564. http://dx.doi.org/10.3390/su14052564.
Pełny tekst źródłaAcakpovi, Amevi, Alfred Tettey Ternor, Nana Yaw Asabere, Patrick Adjei i Abdul-Shakud Iddrisu. "Time Series Prediction of Electricity Demand Using Adaptive Neuro-Fuzzy Inference Systems". Mathematical Problems in Engineering 2020 (8.08.2020): 1–14. http://dx.doi.org/10.1155/2020/4181045.
Pełny tekst źródłaMi, Chunlei, Shifen Cheng i Feng Lu. "Predicting Taxi-Calling Demands Using Multi-Feature and Residual Attention Graph Convolutional Long Short-Term Memory Networks". ISPRS International Journal of Geo-Information 11, nr 3 (9.03.2022): 185. http://dx.doi.org/10.3390/ijgi11030185.
Pełny tekst źródłaXu, Long Jun, Dong Mei Chen, Li Li i Yi Ming Feng. "Trends Analysis on Manganese Demand by GM(1,1)". Advanced Materials Research 347-353 (październik 2011): 2815–18. http://dx.doi.org/10.4028/www.scientific.net/amr.347-353.2815.
Pełny tekst źródłaMaltais, Louis-Gabriel, i Louis Gosselin. "Predicting Domestic Hot Water Demand Using Machine Learning for Predictive Control Purposes". Proceedings 23, nr 1 (26.08.2019): 6. http://dx.doi.org/10.3390/proceedings2019023006.
Pełny tekst źródłaTakahashi, K., R. Ooka i S. Ikeda. "Anomaly detection and missing data imputation in building energy data for automated data pre-processing". Journal of Physics: Conference Series 2069, nr 1 (1.11.2021): 012144. http://dx.doi.org/10.1088/1742-6596/2069/1/012144.
Pełny tekst źródłaRozprawy doktorskie na temat "Demand prediction"
McElroy, Wade Allen. "Demand prediction modeling for utility vegetation management". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/117973.
Pełny tekst źródłaThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, in conjunction with the Leaders for Global Operations Program at MIT, 2018.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 63-64).
This thesis proposes a demand prediction model for utility vegetation management (VM) organizations. The primary uses of the model is to aid in the technology adoption process of Light Detection and Ranging (LiDAR) inspections, and overall system planning efforts. Utility asset management ensures vegetation clearance of electrical overhead powerlines to meet state and federal regulations, all in an effort to create the safest and most reliable electrical system for their customers. To meet compliance, the utility inspects and then prunes and/or removes trees within their entire service area on an annual basis. In recent years LiDAR technology has become more widely implemented in utilities to quickly and accurately inspect their service territory. VM programs encounter the dilemma of wanting to pursue LiDAR as a technology to improve their operations, but find it prudent, especially in the high risk and critical regulatory environment, to test the technology. The biggest problem during, and after, the testing is having a baseline of the expected number of tree units worked each year due to the intrinsic variability of tree growth. As such, double inspection and/or long pilot projects are conducted before there is full adoption of the technology. This thesis will address the prediction of circuit-level tree work forecasting through the development a model using statistical methods. The outcome of this model will be a reduced timeframe for complete adoption of LiDAR technology for utility vegetation programs. Additionally, the modeling effort provides the utility with insight into annual planning improvements. Lastly for later usage, the model will be a baseline for future individual tree growth models that include and leverage LiDAR data to provide a superior level of safety and reliability for utility customers.
by Wade Allen McElroy.
M.B.A.
S.M.
Zhou, Yang. "Multi-Source Large Scale Bike Demand Prediction". Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1703413/.
Pełny tekst źródłaSun, Rui S. M. Massachusetts Institute of Technology. "Analytics for hotels : demand prediction and decision optimization". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111438.
Pełny tekst źródłaThesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 69-71).
The thesis presents the work with a hotel company, as an example of how machine learning techniques can be applied to improve demand predictions and help a hotel property to make better decisions on its pricing and capacity allocation strategies. To solve the decision optimization problem, we first build a random forest model to predict demand under given prices, and then plug the predictions into a mixed integer program to optimize the prices and capacity allocation decisions. We present in the numerical results that our demand forecast model can provide accurate demand predictions, and with optimized decisions, the hotel is able to obtain a significant increase in revenue compared to its historical policies.
by Rui Sun.
S.M. in Transportation
S.M.
Svensk, Gustav. "TDNet : A Generative Model for Taxi Demand Prediction". Thesis, Linköpings universitet, Programvara och system, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-158514.
Pełny tekst źródłaLu, Hongwei Marketing Australian School of Business UNSW. "Small area market demand prediction in the automobile industry". Publisher:University of New South Wales. Marketing, 2008. http://handle.unsw.edu.au/1959.4/43027.
Pełny tekst źródłaLönnbark, Carl. "On Risk Prediction". Doctoral thesis, Umeå universitet, Nationalekonomi, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-22200.
Pełny tekst źródłaBernhardsson, Viktor, i Rasmus Ringdahl. "Real time highway traffic prediction based on dynamic demand modeling". Thesis, Linköpings universitet, Kommunikations- och transportsystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-112094.
Pełny tekst źródłaJones, Simon Andrew. "Prediction of demand for emergency care in an acute hospital". Thesis, Kingston University, 2005. http://eprints.kingston.ac.uk/20739/.
Pełny tekst źródłaShen, Ni. "Prediction of International Flight Operations at U.S. Airports". Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/35687.
Pełny tekst źródłaIn the forecast, a "top-down" methodology is applied in three steps. In the fist step, individual linear regression models are developed to forecast the total annual international passenger enplanements from the U.S. to each of nine World Regions. The resulting regression models are statistically valid and have parameters that are credible in terms of signs and magnitude. In the second step, the forecasted passenger enplanements are distributed among international airports in the U.S. using individual airport market share factors. The airport market share analysis conducted in this step concludes that the airline business is the critical factor explaining the changes associated with airport market share. In the third and final step, the international passenger enplanements at each airport are converted to flight operations required for transporting the passengers. In this process, average load factor and average seats per aircraft are used.
The model has been integrated into the Transportation Systems Analysis Model (TSAM), a comprehensive intercity transportation planning tool. Through a simple graphic user interface implemented in the TSAM model, the user can test different future scenarios by defining a series of scaling factors for GDP, load factor and average seats per aircraft. The default values for the latter two variables are predefined in the model using 2004 historical data derived from Department of Transportation T100 international segment data.
Master of Science
Paul, Udita. "Efficient access network selection and data demand prediction for 5G systems". Master's thesis, University of Cape Town, 2018. http://hdl.handle.net/11427/29729.
Pełny tekst źródłaKsiążki na temat "Demand prediction"
Cohen, Maxime C., Paul-Emile Gras, Arthur Pentecoste i Renyu Zhang. Demand Prediction in Retail. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85855-1.
Pełny tekst źródłaTomar, Anuradha, Prerna Gaur i Xiaolong Jin, red. Prediction Techniques for Renewable Energy Generation and Load Demand Forecasting. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6490-9.
Pełny tekst źródłaTennant, Steven Trevor. Short term demand analysis and prediction for control of water supply. Leicester: Leicester Polytechnic, 1987.
Znajdź pełny tekst źródłaTennant, S. T. Short term demand analysis and prediction for control of water supply. Leicester: Leicester Polytechnic, 1987.
Znajdź pełny tekst źródłaTennant, S. T. A system description of GIDAP(Graphical Interactive Demand Analysis & Prediction program. Leicester: Leicester Polytechnic, 1986.
Znajdź pełny tekst źródłaTennant, S. A system description of GIDAP: (A Graphical Interactive Demand Analysis and Prediction Program). Leicester: Leicester Polytechnic, 1986.
Znajdź pełny tekst źródłaCoulbeck, B. Development of a demand prediction program for use in optimal control of water supply. Leicester: Leicester Polytechnic, 1985.
Znajdź pełny tekst źródłaTennant, S. Test and verification procedures for GIDAP: (A Graphical Interactive Demand Analysis and Prediction Program). Leicester: Leicester Polytechnic, 1986.
Znajdź pełny tekst źródłaCronin, David. Patterns in money demand: Indicators and predictions. Dublin: Research and Publications Department, Central Bank of Ireland, 1994.
Znajdź pełny tekst źródłaGrigor'ev, Anatoliy, i Evgeniy Isaev. Methods and algorithms of data processing. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1032305.
Pełny tekst źródłaCzęści książek na temat "Demand prediction"
Cohen, Maxime C., Paul-Emile Gras, Arthur Pentecoste i Renyu Zhang. "Common Demand Prediction Methods". W Demand Prediction in Retail, 29–67. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85855-1_3.
Pełny tekst źródłaCohen, Maxime C., Paul-Emile Gras, Arthur Pentecoste i Renyu Zhang. "Evaluation and Visualization". W Demand Prediction in Retail, 115–27. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85855-1_6.
Pełny tekst źródłaCohen, Maxime C., Paul-Emile Gras, Arthur Pentecoste i Renyu Zhang. "Clustering Techniques". W Demand Prediction in Retail, 93–114. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85855-1_5.
Pełny tekst źródłaCohen, Maxime C., Paul-Emile Gras, Arthur Pentecoste i Renyu Zhang. "Conclusion and Advanced Topics". W Demand Prediction in Retail, 151–55. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85855-1_8.
Pełny tekst źródłaCohen, Maxime C., Paul-Emile Gras, Arthur Pentecoste i Renyu Zhang. "Tree-Based Methods". W Demand Prediction in Retail, 69–92. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85855-1_4.
Pełny tekst źródłaCohen, Maxime C., Paul-Emile Gras, Arthur Pentecoste i Renyu Zhang. "Introduction". W Demand Prediction in Retail, 1–12. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85855-1_1.
Pełny tekst źródłaCohen, Maxime C., Paul-Emile Gras, Arthur Pentecoste i Renyu Zhang. "Data Pre-Processing and Modeling Factors". W Demand Prediction in Retail, 13–27. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85855-1_2.
Pełny tekst źródłaCohen, Maxime C., Paul-Emile Gras, Arthur Pentecoste i Renyu Zhang. "More Advanced Methods". W Demand Prediction in Retail, 129–49. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85855-1_7.
Pełny tekst źródłaRubio-Bellido, Carlos, Alexis Pérez-Fargallo i Jesús Pulido-Arcas. "Energy Demand Analysis". W Energy Optimization and Prediction in Office Buildings, 31–46. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90146-6_3.
Pełny tekst źródłaYu, Hang, Zishuo Huang, Yiqun Pan i Weiding Long. "Energy Demand Analysis and Prediction". W Guidelines for Community Energy Planning, 17–33. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9600-7_2.
Pełny tekst źródłaStreszczenia konferencji na temat "Demand prediction"
Weng, Haoyuan. "Demand Prediction Model". W 2015 International Conference on Advances in Mechanical Engineering and Industrial Informatics. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/ameii-15.2015.291.
Pełny tekst źródłaTotamane, Raghavendra, Amit Dasgupta, Ravindra Nath Mulukutla i Shrisha Rao. "Air cargo demand prediction". W 2009 3rd Annual IEEE Systems Conference. IEEE, 2009. http://dx.doi.org/10.1109/systems.2009.4815835.
Pełny tekst źródłaMa, Rui. "A water demand prediction". W 2016 4th International Conference on Advanced Materials and Information Technology Processing (AMITP 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/amitp-16.2016.80.
Pełny tekst źródłaChaver, Daniel, Luis Piñuel, Manuel Prieto, Francisco Tirado i Michael C. Huang. "Branch prediction on demand". W the 2003 international symposium. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/871506.871603.
Pełny tekst źródłade Castro, Luciano I., i Peter Cramton. "Prediction markets for electricity demand". W 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2012. http://dx.doi.org/10.1109/allerton.2012.6483340.
Pełny tekst źródłaXu, Jianfeng, Basel Abdalla, Colin Mckinnon, Annie Audibert-Hayet, Edmond Coche i Vincent Gaffard. "Arctic Pipelines Strain Demand Prediction". W ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-10461.
Pełny tekst źródłaMansoor, Naseef, Md Shahriar Shamim i Amlan Ganguly. "A Demand-Aware Predictive Dynamic Bandwidth Allocation Mechanism for Wireless Network-on-Chip". W SLIP '16: System Level Interconnect Prediction Workshop. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2947357.2947361.
Pełny tekst źródłaChu, Jing, Kun Qian, Xu Wang, Lina Yao, Fu Xiao, Jianbo Li, Xin Miao i Zheng Yang. "Passenger Demand Prediction with Cellular Footprints". W 2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). IEEE, 2018. http://dx.doi.org/10.1109/sahcn.2018.8397114.
Pełny tekst źródłaDashevskiy, Mikhail, i Zhiyuan Luo. "Network Traffic Demand Prediction with Confidence". W IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference. IEEE, 2008. http://dx.doi.org/10.1109/glocom.2008.ecp.284.
Pełny tekst źródłaTonchiangsai, Kanokwan, i Ganda Boonsothonsatit. "Electrical Cable Demand Prediction Using ARIMA". W 2021 10th International Conference on Industrial Technology and Management (ICITM). IEEE, 2021. http://dx.doi.org/10.1109/icitm52822.2021.00027.
Pełny tekst źródłaRaporty organizacyjne na temat "Demand prediction"
Kimboko, Andre. A direct and behavioral travel demand model for prediction of campground use by urban recreationists. Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.455.
Pełny tekst źródłaSapp, James. Electricity Demand Forecasting in a Changing Regional Context: The Application of the Multiple Perspective Concept to the Prediction Process. Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.574.
Pełny tekst źródłaKim, Changmo, Ghazan Khan, Brent Nguyen i Emily L. Hoang. Development of a Statistical Model to Predict Materials’ Unit Prices for Future Maintenance and Rehabilitation in Highway Life Cycle Cost Analysis. Mineta Transportation Institute, grudzień 2020. http://dx.doi.org/10.31979/mti.2020.1806.
Pełny tekst źródłaJaspersen, Johannes, Marc Ragin i Justin Sydnor. Predicting Insurance Demand from Risk Attitudes. Cambridge, MA: National Bureau of Economic Research, listopad 2019. http://dx.doi.org/10.3386/w26508.
Pełny tekst źródłaShapovalov, Yevhenii B., Viktor B. Shapovalov, Fabian Andruszkiewicz i Nataliia P. Volkova. Analyzing of main trends of STEM education in Ukraine using stemua.science statistics. [б. в.], lipiec 2020. http://dx.doi.org/10.31812/123456789/3883.
Pełny tekst źródłaHunt, Will, i Jacqueline O'Reilly. Rapid Recruitment in Retail: Leveraging AI in the hiring of hourly paid frontline associates during the Covid-19 Pandemic. Digital Futures at Work Research Centre, marzec 2022. http://dx.doi.org/10.20919/alnb9606.
Pełny tekst źródłaPathak, Parag, i Peng Shi. How Well Do Structural Demand Models Work? Counterfactual Predictions in School Choice. Cambridge, MA: National Bureau of Economic Research, listopad 2017. http://dx.doi.org/10.3386/w24017.
Pełny tekst źródłaWenzel, Mike. Final Scientific Technical Report: INTEGRATED PREDICTIVE DEMAND RESPONSE CONTROLLER FOR COMMERCIAL BUILDINGS. Office of Scientific and Technical Information (OSTI), październik 2013. http://dx.doi.org/10.2172/1096221.
Pełny tekst źródłaFlowe, Robert M., Mark Kasunic i Mary M. Brown. Programmatic and Constructive Interdependence: Emerging Insights and Predictive Indicators of Development Resource Demand. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2010. http://dx.doi.org/10.21236/ada528598.
Pełny tekst źródłaMuelaner, Jody Emlyn. Unsettled Issues in Electrical Demand for Automotive Electrification Pathways. SAE International, styczeń 2021. http://dx.doi.org/10.4271/epr2021004.
Pełny tekst źródła