Gotowa bibliografia na temat „Defects in welding”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Defects in welding”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Defects in welding"
Liu, Jinxin, i Kexin Li. "Intelligent Metal Welding Defect Detection Model on Improved FAST-PNN". Coatings 12, nr 10 (11.10.2022): 1523. http://dx.doi.org/10.3390/coatings12101523.
Pełny tekst źródłaWidyawati, Fauzi, i Lino Marano. "IDENTIFIKASI CACAT LASAN FCAW PADA FONDASI MESIN KAPAL MENGGUNAKAN METODE ULTRASONIC TESTING". Jurnal TAMBORA 5, nr 2 (21.07.2021): 53–58. http://dx.doi.org/10.36761/jt.v5i2.1124.
Pełny tekst źródłaZai, Le, i Xin Tong. "FusionWelding of High-Strength Low-Alloy Steel: A Mini- Review". SOJ Materials Science & Engineering 7, nr 1 (26.03.2019): 1–4. http://dx.doi.org/10.15226/sojmse.2019.00157.
Pełny tekst źródłaRizvi, Saadat Ali, i Wajahat Alib. "Welding defects, Causes and their Remedies: A Review". Teknomekanik 2, nr 2 (15.12.2019): 39–47. http://dx.doi.org/10.24036/tm.v2i2.3272.
Pełny tekst źródłaEt.al, Christopher Paulraj. "An intelligent Model for Defect Prediction in Spot Welding". Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, nr 3 (11.04.2021): 3991–4002. http://dx.doi.org/10.17762/turcomat.v12i3.1689.
Pełny tekst źródłaLi, Qiang, Qi Lu, Yingchun Chen, Junwei Su i Jie Yang. "Effect of the ultrasonic phased array on defect detection of HDPE electro-fusion joint". Journal of Physics: Conference Series 2419, nr 1 (1.01.2023): 012070. http://dx.doi.org/10.1088/1742-6596/2419/1/012070.
Pełny tekst źródłaZhu, Caixia, Haitao Yuan i Guohong Ma. "An active visual monitoring method for GMAW weld surface defects based on random forest model". Materials Research Express 9, nr 3 (1.03.2022): 036503. http://dx.doi.org/10.1088/2053-1591/ac5a38.
Pełny tekst źródłaHua, Liang, Peng Xue, Jin Ping Tang, Hui Jin i Qi Zhang. "Welding Defects Classification Based on Multi-Weights Neural Network". Advanced Materials Research 820 (wrzesień 2013): 130–33. http://dx.doi.org/10.4028/www.scientific.net/amr.820.130.
Pełny tekst źródłaSong, Seung-Hyon, Chang-Soon Lee, Tae-Hwan Lim, Auezhan Amanov i In-Sik Cho. "Fatigue Life Improvement of Weld Beads with Overlap Defects Using Ultrasonic Peening". Materials 16, nr 1 (3.01.2023): 463. http://dx.doi.org/10.3390/ma16010463.
Pełny tekst źródłaJunianto, Teguh, Imam Bayhaqi i Erna Rahayu. "Pengendalian Kualitas Pengelasan Pada Proyek Pipeline Sabar#2". Jurnal Inovator 3, nr 2 (21.12.2020): 1–8. http://dx.doi.org/10.37338/ji.v3i2.133.
Pełny tekst źródłaRozprawy doktorskie na temat "Defects in welding"
Auger, Marc. "Detection of laser-welding defects using neural networks". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2002. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/MQ65599.pdf.
Pełny tekst źródłaHunt, Johnathon Bryce. "Defect Detection in Friction Stir Welding by Measureable Signals". BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8676.
Pełny tekst źródłaDa, Costa S. C. "The prediction of risk of welding defects at the procedure stage using computer knowledge based systems". Thesis, Cranfield University, 1992. http://dspace.lib.cranfield.ac.uk/handle/1826/4446.
Pełny tekst źródłaDolejský, Tomáš. "Porovnání nákladů na svařování a Virtual Welding". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-231042.
Pełny tekst źródłaZareie, Rajani Hamid Reza. "Development of a three-dimensional multi-scale model to study the formation of solidification defects in fusion welding". Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/57601.
Pełny tekst źródłaApplied Science, Faculty of
Engineering, School of (Okanagan)
Graduate
Li, Peigang. "Cold lap formation in Gas Metal Arc Welding of steel : An experimental study of micro-lack of fusion defects". Doctoral thesis, Högskolan Väst, Avd för maskinteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-5596.
Pełny tekst źródłaMaia, Ivan Gonçalves. "Efeito da camada de nitreto na porosidade em soldas de eixos automotivos". [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263152.
Pełny tekst źródłaDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica
Made available in DSpace on 2018-08-06T20:28:37Z (GMT). No. of bitstreams: 1 Maia_IvanGoncalves_M.pdf: 1727519 bytes, checksum: 4ae95467cd56b424526ca03c4f577c25 (MD5) Previous issue date: 2005
Resumo: Visando solucionar o problema da ocorrência de poros em um cordão de solda de um eixo automotivo, o presente trabalho apresenta um estudo da influência de diferentes fatores na ocorrência de porosidade em juntas de aço soldadas pelo processo MIG/MAG robotizado. Basicamente, foi estudada a influência de três fatores na ocorrência dos poros. São eles, a presença de uma camada rica em nitretos na extremidade de um dos tubos que compõe a junta, a limpeza das superfícies a serem soldadas e a vazão do gás de proteção. Após a soldagem dos corpos de prova foram retiradas de cada um deles, três amostras da seção transversal do cordão de solda. A porosidade foi quantificada pela técnica de análise metalográfica por microscopia ótica. Os resultados de porosidade foram apresentados de duas maneiras, uma sem qualquer tipo de restrição quanto aos poros encontrados, e outra em que houve distinção quanto à localização dos poros na seção transversal do cordão de solda. Quando a porosidade foi quantificada de maneira geral, sem qualquer tipo de distinção quanto à localização dos poros, dois fatores influenciaram a ocorrência de poros na junta soldada. São eles, a presença da camada rica em nitretos e a vazão do gás de proteção. No outro caso, levando em consideração a localização dos poros na seção transversal do cordão de solda, foi constatado que para o caso dos poros localizados na raiz da junta, a presença da camada rica em nitretos gerada pelo processo de corte a plasma na extremidade do tubo correspondente ao metal-base 1 afetou significativamente a porosidade resultante no cordão de solda. Além dos ensaios experimentais, ensaios práticos foram realizados no próprio chão de fabrica de produção dos eixos. A realização de ensaios práticos visou avaliar a solução proposta para eliminação da ocorrência de porosidade no cordão de solda dos eixos. Os resultados destes ensaios comprovaram que a substituição do gás utilizado para o corte a plasma na extremidade do tubo correspondente ao metal-base 1, de ar comprimido por oxigênio puro, inibiu a formação dos poros
Abstract: In order to solve the occurrence of pores in weld beads of an automotive axle, the present work studies the influence of three different factors on the occurrence of porosity in joints welded by robotized GMAW process. The factors analyzed were: the presence of a region enriched by nitrides on the surface of the tube related to the base metal 1, the surface cleanliness of the joint components, and the shielding gas flow. Three samples of the weld bead transversal section were retired in each specimen. The porosity was quantified by metalographic analysis technique using an optical microscope. The results were presented by two different ways. In one of this ways, pores were quantified without any kind of distinction. In the other way, pores were grouped in accordance of their location in the weld bead transversal section. The pores quantified without any kind of distinction were affected by the ¿presence of the coat¿ and by the shielding gas flow. The pores located near the joint root were affected only by the ¿presence of the coat¿. In addition to the experimental specimens, practical experiments were made in the axles line production. These practical experiments were developed to evaluate a proposed solution to prevent the occurrence of the pores on the weld bead of the axles. The results of these practical experiments proved that changing the compressed air used in the plasma cut of the extremities of the tube related to the base metal 1 by pure oxygen gas inhibited the pores formation
Mestrado
Materiais e Processos de Fabricação
Mestre em Engenharia Mecânica
Yeh, Felipe Wu Tzong. "Avaliação de descontinuidades no reparo em placas de aço por "Friction Hydro Pillar Processing" (FHPP) via ultrassom e micrografia". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2012. http://hdl.handle.net/10183/75898.
Pełny tekst źródłaFriction welding processes have several advantages in the union of metallic materials. The friction processing of pins or Friction Hydro Pillar Processing (FHPP), is an example of friction welding technology that can be used in the repair of metallic structures in hostile environments. Depending on the welding parameters and materials used (consumable pins and base material), the FHPP welds can present defects like cracks in the bond surface and the presence of inclusions. Such inclusions and defects compromise the mechanical integrity of the weld and therefore a inspection using nondestructive evaluation is justified. Using ultrasonic testing, FHPP welds using ASTM A36 steel plates and ASTM A36 and SAE 8620 steel pins were surveyed, varying only the axial forces in the welding process: 200, 250, 300 and 350kN. It was possible to relate the ultrasound testing results with the location of defects and inclusions in the specimens and those signals were validated by the micrography of the joints studied.
CARVALHO, GILBERTO. "Determinacao de defeitos em profundidade (estereoradiografia)". reponame:Repositório Institucional do IPEN, 2001. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10938.
Pełny tekst źródłaMade available in DSpace on 2014-10-09T14:07:49Z (GMT). No. of bitstreams: 1 07313.pdf: 4614224 bytes, checksum: b35f3b3a0d88e2ee74e856c2c7883aaf (MD5)
Dissertacao (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
Brehovský, Patrik. "Svařování hlubokotažných ocelí s ochrannou vrstvou hybridní technologií Laser-TIG". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417119.
Pełny tekst źródłaKsiążki na temat "Defects in welding"
Hidekazu, Murakawa, i Ma Ninshu, red. Welding deformation and residual stress prevention. Amsterdam: Butterworth-Heinemann, 2012.
Znajdź pełny tekst źródłaA, Simonen F., U.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research. Division of Engineering Technology. i Pacific Northwest National Laboratory, red. RR-PRODIGAL: A model for estimating the probabilities of defects in reactor pressure vessel welds. Washington, DC: Division of Engineering Technology, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1998.
Znajdź pełny tekst źródłaA, Simonen F., U.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research. Division of Engineering Technology. i Pacific Northwest National Laboratory (U.S.), red. RR-PRODIGAL: A model for estimating the probabilities of defects in reactor pressure vessel welds. Washington, DC: Division of Engineering Technology, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1998.
Znajdź pełny tekst źródłaQi, D. M. Effects of welding residual stresses on significance of defects in various types of welded joint. Manchester: UMIST, 1989.
Znajdź pełny tekst źródłaS, Dean R., Hennick A, U.S. Nuclear Regulatory Commission. Office of Nuclear Reactor Regulation. Division of Operational Events Assessment. i Parameter Inc, red. Closeout of IE bulletin 79-03A: Longitudinal weld defects in ASME SA-312 type 304 stainless steel pipe. Washington, DC: Division of Operational Events Assessment, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, 1989.
Znajdź pełny tekst źródłaS, Dean R., Hennick A, U.S. Nuclear Regulatory Commission. Office of Nuclear Reactor Regulation. Division of Operational Events Assessment. i Parameter Inc, red. Closeout of IE bulletin 79-03: Longitudinal weld defects in ASME SA-312 type 304 stainless steel pipe spools manufactured by Youngstown Welding and Engineering Co. Washington, DC: Division of Operational Events Assessment, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, 1989.
Znajdź pełny tekst źródłaGuthrey, Harvey. A model for electron-beam-induced current analysis of mc-Si addressing defect contrast behavior in heavily contaminated PV material: Preprint. Golden, CO]: National Renewable Energy Laboratory, 2012.
Znajdź pełny tekst źródłaTrafton, Maple. Practical Techniques : the Projection Welding and Troubleshooting Welding Defects: Projection-Welding. Independently Published, 2021.
Znajdź pełny tekst źródłaDeng, Dean Y., Yukio Ueda, Ninshu Ma, Hidekazu Murakawa i Naoki Osawa. Welding Deformation and Residual Stress Prevention. Elsevier Science & Technology, 2022.
Znajdź pełny tekst źródłaDeng, Dean Y., Yukio Ueda, Ninshu Ma, Hidekazu Murakawa i Naoki Osawa. Welding Deformation and Residual Stress Prevention. Elsevier Science & Technology, 2022.
Znajdź pełny tekst źródłaCzęści książek na temat "Defects in welding"
Mandal, Nisith R. "Welding Defects". W Ship Construction and Welding, 283–92. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2955-4_19.
Pełny tekst źródłaHan, Junling, Guannan Ren, Limei Peng, Hongyu Tian i Pengbo Ji. "Analysis and Qualification Control of Welding Defects of Coated 15-15Ti Cladding Tube". W Springer Proceedings in Physics, 861–71. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1023-6_73.
Pełny tekst źródłaKatayama, Seiji. "Formation Mechanisms and Preventive Procedures of Laser Welding Defects". W Fundamentals and Details of Laser Welding, 87–111. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7933-2_5.
Pełny tekst źródłaWang, Xuewu, Zhongwang Zhang i Huafeng Liu. "Deep Learning Based Robot Detection and Grinding System for Veneer Defects". W Transactions on Intelligent Welding Manufacturing, 82–95. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3902-0_5.
Pełny tekst źródłaMa, Rui, Peng Dong i Zigang Xv. "Analysis on Fatigue Crack of Orthotropic Steel Bridge Decks". W Advances in Frontier Research on Engineering Structures, 287–93. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8657-4_26.
Pełny tekst źródłaPatel, Falak P., Bhumi K. Patel i Vishvesh J. Badheka. "Welding Processes for Additive Manufacturing—Processes, Materials, and Defects". W Lecture Notes in Mechanical Engineering, 1013–29. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7787-8_80.
Pełny tekst źródłaZhang, Zhifen, Guangrui Wen i Shanben Chen. "On-Line Monitoring and Defects Detection of Robotic Arc Welding: A Review and Future Challenges". W Transactions on Intelligent Welding Manufacturing, 3–28. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8668-8_1.
Pełny tekst źródłaLi, Gang, Haiping Chen, Jingyuan Xu, Chao Chen, Na Lv i Shanben Chen. "Development of a Low-Cost Arc Spectrum Sensor for Monitoring Pore Defects in Welding Process". W Transactions on Intelligent Welding Manufacturing, 75–92. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8668-8_4.
Pełny tekst źródłaXu, Jingyuan, i Shanben Chen. "The Review of Spectrum Detection and Ultrasonic Vibration Control of Porosity Defects in Aluminum Alloy Welding". W Transactions on Intelligent Welding Manufacturing, 3–24. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7215-9_1.
Pełny tekst źródłaYang, J., S. Gang, X. Li, Li Chen i F. Xu. "Typical Joint Defects in Laser Welding of Aluminium-Lithium Alloy". W Proceedings of the 36th International MATADOR Conference, 595–98. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-432-6_130.
Pełny tekst źródłaStreszczenia konferencji na temat "Defects in welding"
Tsukamoto, Susumu, Isao Kawaguchi, Goro Arakane, Tomoyuki Kamata i Katsuhiro Maekawa. "Suppression of welding defects in deep penetration CO2 laser welding". W ICALEO® 2000: Proceedings of the Laser Materials Processing Conference. Laser Institute of America, 2000. http://dx.doi.org/10.2351/1.5059447.
Pełny tekst źródła"AN AUTOMATIC WELDING DEFECTS CLASSIFIER SYSTEM". W International Conference on Computer Vision Theory and Applications. SciTePress - Science and and Technology Publications, 2008. http://dx.doi.org/10.5220/0001075902600263.
Pełny tekst źródłaLei, Xiao-chun, Ping Zhou i Ru-xiong Li. "Analysis of Welding Defects in Spot Welding Process U-I Curves". W 2009 Third International Conference on Genetic and Evolutionary Computing (WGEC 2009). IEEE, 2009. http://dx.doi.org/10.1109/wgec.2009.110.
Pełny tekst źródłaWei, P. S., K. C. Chuang i J. S. Ku. "Spiking and Humping Defects in Laser Welding". W ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39513.
Pełny tekst źródłaJones, Marshall, Carl Erikson, Daniel Nowak i Ganjiang Feng. "Laser hot-wire welding for minimizing defects". W ICALEO® 2004: 23rd International Congress on Laser Materials Processing and Laser Microfabrication. Laser Institute of America, 2004. http://dx.doi.org/10.2351/1.5060291.
Pełny tekst źródłaLi, Yan, Jian Shuai, Yan Zhou i Kui Xu. "Failure Analysis of Pipeline With Pore Defects". W ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/pvp2015-45351.
Pełny tekst źródłaAjri, Abhishek, i Yung C. Shin. "Investigation on the Effects of Process Parameters on Defect Formation in Friction Stir Welded Samples via Predictive Numerical Modeling and Experiments". W ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/msec2017-3092.
Pełny tekst źródłaBates, Philip J., Gene Zak i Xiaochao Cao. "Weld Read-Through Defects in Laser Transmission Welding". W SAE 2011 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2011. http://dx.doi.org/10.4271/2011-01-0476.
Pełny tekst źródłaLiu, Xiao-Ming, Yun-Peng Gao, Zhi-Gang Wei i Hou-Xia Yan. "Welding defects of SUPER304H steel and their countermeasures". W 2015 International Workshop on Materials, Manufacturing Technology, Electronics and Information Science. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813109384_0001.
Pełny tekst źródłaKan, Yusuf Can, i Habil Kalkan. "Automatic Detection and Classification of Laser Welding Defects". W 2021 Innovations in Intelligent Systems and Applications Conference (ASYU). IEEE, 2021. http://dx.doi.org/10.1109/asyu52992.2021.9599064.
Pełny tekst źródłaRaporty organizacyjne na temat "Defects in welding"
Ruschau. L51771 Alternative Acceptance Criteria of Girth Weld Defects. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), czerwiec 1997. http://dx.doi.org/10.55274/r0010187.
Pełny tekst źródłaSchipaunboord, W. N., M. A. Lont i A. H. M. Kron. JTM-00-01 NDE Acceptance Criteria for Girth Defects Linked with Welding and Inspection Technique. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), styczeń 2001. http://dx.doi.org/10.55274/r0011796.
Pełny tekst źródłaWang. PGH376V A Comprehensive Update on the Evaluation of Pipeline Weld Defects. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), styczeń 2008. http://dx.doi.org/10.55274/r0010920.
Pełny tekst źródłaBegg, Darren. PR-214-124506-R02 Toughness and Strength of Sub-Arc Double Jointed High Strength Pipe. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), sierpień 2017. http://dx.doi.org/10.55274/r0011418.
Pełny tekst źródłaPope i Pope. L51653 Fracture Behavior of Girth Welds Containing Natural Defects Comparison with Existing Standards. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), luty 1992. http://dx.doi.org/10.55274/r0010132.
Pełny tekst źródłaFoley, W. J., R. S. Dean i A. Hennick. Closeout of IE Bulletin 79-03: Longitudinal weld defects in ASME SA-312 Type 304 stainless steel pipe spools manufactured by Youngstown Welding and Engineering Co. Office of Scientific and Technical Information (OSTI), kwiecień 1989. http://dx.doi.org/10.2172/6344615.
Pełny tekst źródłaBala. L51600 Engineering Critical Assessment of Girth Welds in Small Diameter Pipe. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), czerwiec 1989. http://dx.doi.org/10.55274/r0010101.
Pełny tekst źródłaWang. L51841 Compendium of Pipeline Girth Weld ECA Methodologies to Support Revisions to Existing Code Practices. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), wrzesień 2001. http://dx.doi.org/10.55274/r0010268.
Pełny tekst źródłaMiller. L51659 Diverless Pipeline Repair Clamp I. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), sierpień 1993. http://dx.doi.org/10.55274/r0010264.
Pełny tekst źródłaPayer. L51903 Damage to FBE and Liquid Epoxy Coating from Hydrogen Outgassing from Welds. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), maj 2004. http://dx.doi.org/10.55274/r0010383.
Pełny tekst źródła