Artykuły w czasopismach na temat „Defect textures”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Defect textures”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zhou, Lei, Bingya Ma, Yanyan Dong, Zhewen Yin i Fan Lu. "DCFE-YOLO: A novel fabric defect detection method". PLOS ONE 20, nr 1 (14.01.2025): e0314525. https://doi.org/10.1371/journal.pone.0314525.
Pełny tekst źródłaCarrilho, Rui, Kailash A. Hambarde i Hugo Proença. "A Novel Dataset for Fabric Defect Detection: Bridging Gaps in Anomaly Detection". Applied Sciences 14, nr 12 (19.06.2024): 5298. http://dx.doi.org/10.3390/app14125298.
Pełny tekst źródłaZhang, Yuming, Zhongyuan Gao, Chao Zhi, Mengqi Chen, Youyong Zhou, Shuai Wang, Sida Fu i Lingjie Yu. "A novel defect generation model based on two-stage GAN". e-Polymers 22, nr 1 (1.01.2022): 793–802. http://dx.doi.org/10.1515/epoly-2022-0071.
Pełny tekst źródłaShi, Hui, Gangyan Li i Hanwei Bao. "Lightweight Reconstruction Network for Surface Defect Detection Based on Texture Complexity Analysis". Electronics 12, nr 17 (27.08.2023): 3617. http://dx.doi.org/10.3390/electronics12173617.
Pełny tekst źródłaLi, Feng, Lina Yuan, Kun Zhang i Wenqing Li. "A defect detection method for unpatterned fabric based on multidirectional binary patterns and the gray-level co-occurrence matrix". Textile Research Journal 90, nr 7-8 (1.10.2019): 776–96. http://dx.doi.org/10.1177/0040517519879904.
Pełny tekst źródłaMo, Dongmei, i Wai Keung Wong. "Fabric Defect Classification based on Deep Hashing Learning". AATCC Journal of Research 8, nr 1_suppl (wrzesień 2021): 191–201. http://dx.doi.org/10.14504/ajr.8.s1.23.
Pełny tekst źródłaLi, Jianqi, Binfang Cao, Fangyan Nie i Minhan Zhu. "Feature Extraction of Foam Nickel Surface Based on Multi-Scale Texture Analysis". Journal of Advanced Computational Intelligence and Intelligent Informatics 23, nr 2 (20.03.2019): 175–82. http://dx.doi.org/10.20965/jaciii.2019.p0175.
Pełny tekst źródłaLiu, Yang, i Weiqi Yuan. "A Distributed System-Based Multiplex Networks to Extract Texture Feature". International Journal of Distributed Systems and Technologies 13, nr 3 (1.07.2022): 1–11. http://dx.doi.org/10.4018/ijdst.307991.
Pełny tekst źródłaZhang, Huanhuan, Jinxiu Ma, Junfeng Jing i Pengfei Li. "Fabric Defect Detection Using L0 Gradient Minimization and Fuzzy C-Means". Applied Sciences 9, nr 17 (26.08.2019): 3506. http://dx.doi.org/10.3390/app9173506.
Pełny tekst źródłaSong, K. Y., J. Kittler i M. Petrou. "Defect detection in random colour textures". Image and Vision Computing 14, nr 9 (październik 1996): 667–83. http://dx.doi.org/10.1016/0262-8856(96)84491-x.
Pełny tekst źródłaHu, Guanghua, Junfeng Huang, Qinghui Wang, Jingrong Li, Zhijia Xu i Xingbiao Huang. "Unsupervised fabric defect detection based on a deep convolutional generative adversarial network". Textile Research Journal 90, nr 3-4 (17.07.2019): 247–70. http://dx.doi.org/10.1177/0040517519862880.
Pełny tekst źródłaDeepali Ujalambkar. "Industrial Product Surface Defect Detection Using CNN: A Deep Learning Approach". Panamerican Mathematical Journal 34, nr 3 (1.10.2024): 84–95. http://dx.doi.org/10.52783/pmj.v34.i3.1775.
Pełny tekst źródłaSi, Xiao Shu, Hong Zheng i Xue Min Hu. "Fabric Defect Detection Based on SRG-PCNN". Advanced Materials Research 148-149 (październik 2010): 1319–26. http://dx.doi.org/10.4028/www.scientific.net/amr.148-149.1319.
Pełny tekst źródłaZhang, Bo, i Chunming Tang. "A Method for Defect Detection of Yarn-Dyed Fabric Based on Frequency Domain Filtering and Similarity Measurement". Autex Research Journal 19, nr 3 (1.09.2019): 257–62. http://dx.doi.org/10.1515/aut-2018-0040.
Pełny tekst źródłaMachon, Thomas, i Gareth P. Alexander. "Global defect topology in nematic liquid crystals". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, nr 2191 (lipiec 2016): 20160265. http://dx.doi.org/10.1098/rspa.2016.0265.
Pełny tekst źródłaCowling, Stephen James, Edward James Davis, Richard John Mandle i John William Goodby. "ChemInform Abstract: Defect Textures of Liquid Crystals". ChemInform 45, nr 32 (24.07.2014): no. http://dx.doi.org/10.1002/chin.201432267.
Pełny tekst źródłaOUYANG, Zhou, Huailiang ZHANG, Ziyang TANG, Ling PENG i Sheng YU. "Research on defect detection algorithm of complex texture ceramic tiles based on visual attention mechanism". Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 40, nr 2 (kwiecień 2022): 414–21. http://dx.doi.org/10.1051/jnwpu/20224020414.
Pełny tekst źródłaZhou, Jian, i Jianli Liu. "Segmentation of defects in textile fabric with robust texture representation and total variation". International Journal of Clothing Science and Technology 32, nr 6 (28.04.2020): 813–23. http://dx.doi.org/10.1108/ijcst-10-2019-0157.
Pełny tekst źródłaMARIN, Florin Bogdan, i Mihaela MARIN. "Supervised Learning Plastic Defect Algorithm Detection". Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science 46, nr 4 (15.12.2023): 89–92. http://dx.doi.org/10.35219/mms.2023.4.15.
Pełny tekst źródłaYu, Ronghao, Yun Liu, Rui Yang i Yingna Wu. "VQGNet: An Unsupervised Defect Detection Approach for Complex Textured Steel Surfaces". Sensors 24, nr 19 (27.09.2024): 6252. http://dx.doi.org/10.3390/s24196252.
Pełny tekst źródłaLiu, Zhoufeng, Baorui Wang, Chunlei Li, Miao Yu i Shumin Ding. "Fabric defect detection based on deep-feature and low-rank decomposition". Journal of Engineered Fibers and Fabrics 15 (styczeń 2020): 155892502090302. http://dx.doi.org/10.1177/1558925020903026.
Pełny tekst źródłaZhong, Zhiyan, Hongxin Wang i Dan Xiang. "Small Defect Detection Based on Local Structure Similarity for Magnetic Tile Surface". Electronics 12, nr 1 (30.12.2022): 185. http://dx.doi.org/10.3390/electronics12010185.
Pełny tekst źródłaMehta, Devang, i Noah Klarmann. "Autoencoder-Based Visual Anomaly Localization for Manufacturing Quality Control". Machine Learning and Knowledge Extraction 6, nr 1 (21.12.2023): 1–17. http://dx.doi.org/10.3390/make6010001.
Pełny tekst źródłaTHATCHER, M. J., i M. J. MORGAN. "BIREFRINGENT ELECTROWEAK DEFECTS". International Journal of Modern Physics A 17, nr 14 (10.06.2002): 1953–64. http://dx.doi.org/10.1142/s0217751x02010583.
Pełny tekst źródłaKim, Minsu, Hoon Jo, Moonsoo Ra i Whoi-Yul Kim. "Weakly-Supervised Defect Segmentation on Periodic Textures Using CycleGAN". IEEE Access 8 (2020): 176202–16. http://dx.doi.org/10.1109/access.2020.3024554.
Pełny tekst źródłaAsha, V., N. U. Bhajantri i P. Nagabhushan. "Similarity measures for automatic defect detection on patterned textures". International Journal of Information and Communication Technology 4, nr 2/3/4 (2012): 118. http://dx.doi.org/10.1504/ijict.2012.048758.
Pełny tekst źródłaStanosz, Glen R., i Gary Laudermilch. "Variation in Frequency of Sugar Maple Bole Damage From Tree-Marking Materials". Northern Journal of Applied Forestry 9, nr 4 (1.12.1992): 136–37. http://dx.doi.org/10.1093/njaf/9.4.136.
Pełny tekst źródłaZHU, Runhu, Binjie XIN, Na DENG i Mingzhu FAN. "Semantic Segmentation Using DeepLabv3+ Model for Fabric Defect Detection". Wuhan University Journal of Natural Sciences 27, nr 6 (grudzień 2022): 539–49. http://dx.doi.org/10.1051/wujns/2022276539.
Pełny tekst źródłaCao, Luwen, Qixin Han, Rong Luo, Li Xu i Weikuan Jia. "Optimized YOLOv8 Model for Precise Defects Detection on Wet-Blue Hide Surface". Journal of the American Leather Chemists Association 119, nr 11 (1.11.2024): 467–80. http://dx.doi.org/10.34314/h35hpe67.
Pełny tekst źródłaGardymova, Anna P., Mikhail N. Krakhalev i Victor Ya Zyryanov. "Optical Textures and Orientational Structures in Cholesteric Droplets with Conical Boundary Conditions". Molecules 25, nr 7 (10.04.2020): 1740. http://dx.doi.org/10.3390/molecules25071740.
Pełny tekst źródłaNovotná, Vladimíra, Lubor Lejček, Věra Hamplová i Jana Vejpravová. "Defect Structures of Magnetic Nanoparticles in Smectic A Liquid Crystals". Molecules 26, nr 18 (21.09.2021): 5717. http://dx.doi.org/10.3390/molecules26185717.
Pełny tekst źródłaXu, Haitao, Chengming Liu, Shuya Duan, Liangpin Ren, Guozhen Cheng i Bing Hao. "A Fabric Defect Segmentation Model Based on Improved Swin-Unet with Gabor Filter". Applied Sciences 13, nr 20 (17.10.2023): 11386. http://dx.doi.org/10.3390/app132011386.
Pełny tekst źródłaR, Subashini, Hemalatha R i Muthumeenakshi K. "Dictionary Learning Based Adaptive Defect Detection In Complex Fabric Textures". International Journal of Computing and Digital Systems 14, nr 1 (1.09.2023): 769–78. http://dx.doi.org/10.12785/ijcds/140159.
Pełny tekst źródłaShen, Yanchun, Jinbing Wu, Jingge Wang, Saibo Wu i Wei Hu. "Topological Defect Evolutions Guided by Varying the Initial Azimuthal Orientation". Applied Sciences 14, nr 21 (29.10.2024): 9869. http://dx.doi.org/10.3390/app14219869.
Pełny tekst źródłaSaberironaghi, Alireza, Jing Ren i Moustafa El-Gindy. "Defect Detection Methods for Industrial Products Using Deep Learning Techniques: A Review". Algorithms 16, nr 2 (8.02.2023): 95. http://dx.doi.org/10.3390/a16020095.
Pełny tekst źródłaRalló, Miquel, María S. Millán i Jaume Escofet. "Unsupervised novelty detection using Gabor filters for defect segmentation in textures". Journal of the Optical Society of America A 26, nr 9 (18.08.2009): 1967. http://dx.doi.org/10.1364/josaa.26.001967.
Pełny tekst źródłaBrzakovic, D., H. Beck i N. Sufi. "An approach to defect detection in materials characterized by complex textures". Pattern Recognition 23, nr 1-2 (styczeń 1990): 99–107. http://dx.doi.org/10.1016/0031-3203(90)90052-m.
Pełny tekst źródłaViney, Christopher, i Wendy S. Putnam. "Characterization of sheared liquid crystalline polymers by light microscopy". Proceedings, annual meeting, Electron Microscopy Society of America 51 (1.08.1993): 864–65. http://dx.doi.org/10.1017/s0424820100150150.
Pełny tekst źródłaShanthalakshmi, M., Susmita mishra, V. Jananee, P. Narayana Perumal i S. Manoj Jayakar. "Identification of Casting Product Surface Quality Using Alex net and Le-net CNN Models". Journal of Physics: Conference Series 2335, nr 1 (1.09.2022): 012031. http://dx.doi.org/10.1088/1742-6596/2335/1/012031.
Pełny tekst źródłaPatil, Deepika B., Akriti Nigam, Subrajeet Mohapatra i Sagar Nikam. "A Deep Learning Approach to Classify and Detect Defects in the Components Manufactured by Laser Directed Energy Deposition Process". Machines 11, nr 9 (25.08.2023): 854. http://dx.doi.org/10.3390/machines11090854.
Pełny tekst źródłaMei, Shunqi, Yishan Shi, Heng Gao i Li Tang. "Research on Fabric Defect Detection Algorithm Based on Improved YOLOv8n Algorithm". Electronics 13, nr 11 (21.05.2024): 2009. http://dx.doi.org/10.3390/electronics13112009.
Pełny tekst źródłaLiu, Zhoufeng, Chi Zhang, Chunlei Li, Shumin Ding, Yan Dong i Yun Huang. "Fabric defect recognition using optimized neural networks". Journal of Engineered Fibers and Fabrics 14 (styczeń 2019): 155892501989739. http://dx.doi.org/10.1177/1558925019897396.
Pełny tekst źródłaWu, Ying, Jian Zhou, Nicholus Tayari Akankwasa, Kai Wang i Jun Wang. "Fabric texture representation using the stable learned discrete cosine transform dictionary". Textile Research Journal 89, nr 3 (28.11.2017): 294–310. http://dx.doi.org/10.1177/0040517517743688.
Pełny tekst źródłaBen-abraham, S. I. "Development of Defect Textures in Smectic A Liquid Crystals: A Nonlinear Model". Molecular Crystals and Liquid Crystals 123, nr 1 (luty 1985): 77–100. http://dx.doi.org/10.1080/00268948508074768.
Pełny tekst źródłaTsai, Du-Ming, i Shin-Min Chao. "An anisotropic diffusion-based defect detection for sputtered surfaces with inhomogeneous textures". Image and Vision Computing 23, nr 3 (marzec 2005): 325–38. http://dx.doi.org/10.1016/j.imavis.2004.09.003.
Pełny tekst źródłaLi, Junfeng, i Hao Wang. "Surface defect detection of vehicle light guide plates based on an improved RetinaNet". Measurement Science and Technology 33, nr 4 (7.01.2022): 045401. http://dx.doi.org/10.1088/1361-6501/ac4597.
Pełny tekst źródłaZhou, Jian, Jian Zhou, Jun Wang i Honggang Bu. "Fabric Defect Detection Using a Hybrid and Complementary Fractal Feature Vector and FCM-based Novelty Detector". Fibres and Textiles in Eastern Europe 25 (31.12.2017): 46–52. http://dx.doi.org/10.5604/01.3001.0010.5370.
Pełny tekst źródłaZhu, Jinsong, i Jinbo Song. "An Intelligent Classification Model for Surface Defects on Cement Concrete Bridges". Applied Sciences 10, nr 3 (2.02.2020): 972. http://dx.doi.org/10.3390/app10030972.
Pełny tekst źródłaZhang, Yizhuo, Guanlei Wu, Shen Shi i Huiling Yu. "WTSM-SiameseNet: A Wood-Texture-Similarity-Matching Method Based on Siamese Networks". Information 15, nr 12 (16.12.2024): 808. https://doi.org/10.3390/info15120808.
Pełny tekst źródłaP. Banumathi, Et al. "DEFECTCNN: Improved Discriminative Convolution Neural Network Towards Instantaneous Automatic Detection and Classification of Complex Defect in Fabrics". International Journal on Recent and Innovation Trends in Computing and Communication 11, nr 11 (30.11.2023): 326–35. http://dx.doi.org/10.17762/ijritcc.v11i11.9610.
Pełny tekst źródła