Gotowa bibliografia na temat „Defect recombination”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Defect recombination”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Defect recombination"
Saeed, Faisal, Muhammad Haseeb Khan, Haider Ali Tauqeer, Asfand Haroon, Asad Idrees, Syed Mzhar Shehrazi, Lukas Prokop, Vojtech Blazek, Stanislav Misak i Nasim Ullah. "Numerical Investigation of Photo-Generated Carrier Recombination Dynamics on the Device Characteristics for the Perovskite/Carbon Nitride Absorber-Layer Solar Cell". Nanomaterials 12, nr 22 (15.11.2022): 4012. http://dx.doi.org/10.3390/nano12224012.
Pełny tekst źródłaLausch, Dominik, Ronny Bakowskie, Michael Lorenz, S. Schweizer, Kai Petter i Christian Hagendorf. "Classification of Recombination-Active Defects in Multicrystalline Solar Cells Made from Upgraded Metallurgical Grade (UMG) Silicon". Solid State Phenomena 178-179 (sierpień 2011): 88–93. http://dx.doi.org/10.4028/www.scientific.net/ssp.178-179.88.
Pełny tekst źródłaXu, Xin, Zhenyuan Wu, Zebin Zhao, Zhengli Lu, Yujia Gao, Xi Huang, Jiawei Huang i in. "First-principles study of detrimental iodine vacancy in lead halide perovskite under strain and electron injection". Applied Physics Letters 121, nr 9 (29.08.2022): 092106. http://dx.doi.org/10.1063/5.0107441.
Pełny tekst źródłaVoronkov, Vladimir V., i Robert Falster. "Light-Induced Boron-Oxygen Recombination Centres in Silicon: Understanding their Formation and Elimination". Solid State Phenomena 205-206 (październik 2013): 3–14. http://dx.doi.org/10.4028/www.scientific.net/ssp.205-206.3.
Pełny tekst źródłaStorasta, L., F. H. C. Carlsson, Peder Bergman i Erik Janzén. "Recombination Enhanced Defect Annealing in 4H-SiC". Materials Science Forum 483-485 (maj 2005): 369–72. http://dx.doi.org/10.4028/www.scientific.net/msf.483-485.369.
Pełny tekst źródłaKlein, Paul B., Rachael L. Myers-Ward, Kok Keong Lew, Brenda L. VanMil, Charles R. Eddy, D. Kurt Gaskill, Amitesh Shrivastava i Tangali S. Sudarshan. "Temperature Dependence of the Carrier Lifetime in 4H-SiC Epilayers". Materials Science Forum 645-648 (kwiecień 2010): 203–6. http://dx.doi.org/10.4028/www.scientific.net/msf.645-648.203.
Pełny tekst źródłaПещерова, С. М., Е. Б. Якимов, А. И. Непомнящих, В. И. Орлов, О. В. Феклисова, Л. А. Павлова i Р. В. Пресняков. "Зависимость объемных электрофизических свойств мультикремния от параметров разориентации зерен". Физика и техника полупроводников 53, nr 1 (2019): 59. http://dx.doi.org/10.21883/ftp.2019.01.46988.8814.
Pełny tekst źródłaGrant, Nicholas E., Fiacre E. Rougieux i Daniel Macdonald. "Low Temperature Activation of Grown-In Defects Limiting the Lifetime of High Purity n-Type Float-Zone Silicon Wafers". Solid State Phenomena 242 (październik 2015): 120–25. http://dx.doi.org/10.4028/www.scientific.net/ssp.242.120.
Pełny tekst źródłaHarada, Tomoki, Tetsuo Ikari i Atsuhiko Fukuyama. "Development of laser heterodyne photothermal displacement method for mapping carrier nonradiative recombination centers in semiconductors". Journal of Applied Physics 131, nr 19 (21.05.2022): 195701. http://dx.doi.org/10.1063/5.0085041.
Pełny tekst źródłaHara, Tomohiko, i Yoshio Ohshita. "Analysis of recombination centers near an interface of a metal–SiO2–Si structure by double carrier pulse deep-level transient spectroscopy". AIP Advances 12, nr 9 (1.09.2022): 095316. http://dx.doi.org/10.1063/5.0106319.
Pełny tekst źródłaRozprawy doktorskie na temat "Defect recombination"
Puttisong, Yuttapoom. "Spin-dependent Recombination in GaNAs". Thesis, Linköping University, Linköping University, Department of Physics, Chemistry and Biology, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-19355.
Pełny tekst źródłaSpin filtering properties of novel GaNAs alloys are reported in this thesis. Spin-dependent recombination (SDR) in GaNAs via a deep paramagnetic defect center is intensively studied. By using the optical orientation photoluminescence (PL) technique, GaNAs is shown to be able to spin filter electrons injected from GaAs, which is a useful functional property for integratition with future electronic devices. The spin filtering ability is found to degrade in narrow GaNAs quantum well (QW) structures which is attributed to (i) acceleration of band-to-band recombination competing with the SDR process and to (ii) faster electron spin relaxation in the narrow QWs. Ga interstitial-related defect centers have been found to be responsible for the SDR process by using the optically detected magnetic resonance (ODMR) technique. The defects are found to be the dominant grown-in defects in GaNAs, commonly formed during both MBE and MOCVD growths. Methods to control the concentration of the Ga interstitials by varying doping, growth parameters and post-growth treatments are also examined.
Thomas, Mélissa. "Origins of Cellular Lethality Resulting From a Defect in Homologous Recombination in Human Cells". Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPASL027.
Pełny tekst źródłaHomologous recombination (HR) is involved in repairing DNA double strand breaks, and in protecting and restarting stalled or collapsed replication forks. Rad51 and BRCA2 are two key proteins of HR. I have showed that inhibiting HR, as well as over expressing Rad51, is lethal in human cells, although a very few cells still survive the inhibition. Moreover, many cancers carry mutations in an HR gene (BRCA1/2 in breast and ovary cancers) or over express an HR gene. My project aims to identify the mechanisms and the causes behind the lethality triggered by a dysregulation of HR, and to understand how a few cells manage to survive it. I have determined, through FACS and phosphorylated histone H3 labeling (IF), that HR deficient human cells, or those over expressing Rad51, accumulate at the G2/M checkpoint.At the same time, time-lapse microscopy experiments seemed to indicate that the cells died from apoptosis, which was confirmed by data from experiments using Annexin-V as an apoptosis marker and from Western-Blots. Western-Blots showed that the G2/M checkpoint is activated, through analysis of CyclinB1 and of cdk1, and that apoptosis is triggered, through analysis of PARP cleavage. My main working hypothesis was that overexpressing a dominant negative form of Rad51, and possibly also overexpressing Rad51 WT, would lead to replication defects, whose accumulation would in turn lead to an activation of the checkpoint. BrdU incorporation experients and use of the molecular combing technique confirmed this hypothesis : in HR-dysregulated cells, replication speed is slowed down and there are more stalled forks. In-silico analyses have showed that HR-mutated cancers often carry a second mutation in another gene, involved in either the G2/M checkpoint or in restarting stalled replication forks. Based on these analyses and on results from RNAseq experiments performed on FANCD1 patients' fibroblasts, candidate genes have already been listed, confirming the in-silico analysis
Turcu, Mircea Cassian. "Defect energies, band alignments, and charge carrier recombination in polycrystalline Cu(In,Ga)(Se,S)2 alloys". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2004. http://nbn-resolving.de/urn:nbn:de:swb:14-1086247686828-95497.
Pełny tekst źródłaTurcu, Mircea Cassian. "Defect energies, band alignments, and charge carrier recombination in polycrystalline Cu(In,Ga)(Se,S)2 alloys". Doctoral thesis, Technische Universität Dresden, 2003. https://tud.qucosa.de/id/qucosa%3A24342.
Pełny tekst źródłaSantos, Samantha Fonseca dos. "Theoretical and computational studies of dissociative recombination of H₃⁺ with low kinetic energy electrons time-independent and time-dependent approach /". Orlando, Fla. : University of Central Florida, 2009. http://purl.fcla.edu/fcla/etd/CFE0002668.
Pełny tekst źródłaPATRIZI, LAURA. "ANALYSIS OF B LYMPHOCYTES IN MOUSE MODEL LIGASE IV WITH HYPOMORPHIC MUTATION IN VDJ RECOMBINATION ASSOCIATED WITH GROWTH DEFECT". Doctoral thesis, Università degli Studi di Milano, 2010. http://hdl.handle.net/2434/150193.
Pełny tekst źródłaLam, N. D., S. Kim, J. J. Lee, K. R. Choi, M. H. Doan i H. Lim. "Enhanced Luminescence of InGaN / GaN Vertical Light Emitting Diodes with an InGaN Protection Layer". Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35210.
Pełny tekst źródłaTurcu, Mircea C. [Verfasser]. "Defect energies, band alignments, and charge carrier recombination in polycrystalline Cu(In,Ga)(Se,S)2 alloys / Mircea C Turcu". Aachen : Shaker, 2004. http://d-nb.info/1170529550/34.
Pełny tekst źródłaSteingrube, Silke [Verfasser]. "Recombination models for defects in silicon solar cells / Silke Steingrube". Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2011. http://d-nb.info/1015460577/34.
Pełny tekst źródłaRUCCI, FRANCESCA. "Murine models of hypomorphic defects of v(d)j recombination". Doctoral thesis, Università degli Studi di Milano, 2009. http://hdl.handle.net/2434/155853.
Pełny tekst źródłaKsiążki na temat "Defect recombination"
Orton, J. W. The electrical characterization of semiconductors: Measurement of minority carrier properties. London: Academic Press, 1990.
Znajdź pełny tekst źródłaDavidson, J. A. Minority carrier processes and recombination at point and extended defects in silicon. Manchester: UMIST, 1996.
Znajdź pełny tekst źródłaMultiphonon Recombination at Defects in Semiconductors. University of Cambridge ESOL Examinations, 2002.
Znajdź pełny tekst źródłaOrton, J. W., i P. Blood. The Electrical Characterization of Semiconductors: Measurement of Minority Carrier Properties (Techniques of Physics). Academic Press, 1992.
Znajdź pełny tekst źródłaVoll, Reinhard E., i Barbara M. Bröker. Innate vs acquired immunity. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199642489.003.0048.
Pełny tekst źródłaCzęści książek na temat "Defect recombination"
Storasta, L., F. H. C. Carlsson, J. Peder Bergman i Erik Janzén. "Recombination Enhanced Defect Annealing in 4H-SiC". W Materials Science Forum, 369–72. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-963-6.369.
Pełny tekst źródłaRedfield, David. "Recombination-Enhanced Defect Formation and Annealing in a-Si:H". W Disordered Semiconductors, 635–40. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1841-5_67.
Pełny tekst źródłaTakagi, Hidekazu. "Extension of the Quantum Defect Theory and Its Application to Electron and Molecular Ion Collisions". W Dissociative Recombination of Molecular Ions with Electrons, 177–86. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0083-4_17.
Pełny tekst źródłaMarino, F., S. Gialanella i R. Delorenzo. "Defect Recombination Phenomena in Melt-Spun Ordered Alloys of the Fe-Al System". W Ordering and Disordering in Alloys, 155–63. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2886-5_16.
Pełny tekst źródłavan der Burg, Mirjam, Andrew R. Gennery i Qiang Pan-Hammarström. "Class-Switch Recombination Defects". W Humoral Primary Immunodeficiencies, 179–99. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91785-6_15.
Pełny tekst źródłaDurandy, A., i Sven Kracker. "Immunoglobulin Class Switch Recombination Defects". W Encyclopedia of Medical Immunology, 385–92. New York, NY: Springer New York, 2020. http://dx.doi.org/10.1007/978-1-4614-8678-7_34.
Pełny tekst źródłaDurandy, A., i S. Kracker. "Immunoglobulin Class Switch Recombination Defects". W Encyclopedia of Medical Immunology, 1–7. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4614-9209-2_34-1.
Pełny tekst źródłaBryant, Helen E., i Sydney Shall. "Synthetic Lethality with Homologous Recombination Repair Defects". W Cancer Drug Discovery and Development, 315–44. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14151-0_13.
Pełny tekst źródłaKracker, Sven, Pauline Gardës i Anne Durandy. "Inherited Defects of Immunoglobulin Class Switch Recombination". W Advances in Experimental Medicine and Biology, 166–74. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6448-9_15.
Pełny tekst źródłaWilshaw, P. R., T. S. Fell i G. R. Booker. "Recombination at Dislocations in Silicon and Gallium Arsenide". W Point and Extended Defects in Semiconductors, 243–56. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-5709-4_18.
Pełny tekst źródłaStreszczenia konferencji na temat "Defect recombination"
Benchiheb, Nedjoua, Asma Benchiheb, Yasmina Saidi i Hamza Lidjici. "Emitter Thickness and Solar Cell Efficiency: The Role of Deep-Level Defects and Auger Recombination". W 2024 3rd International Conference on Advanced Electrical Engineering (ICAEE), 1–7. IEEE, 2024. https://doi.org/10.1109/icaee61760.2024.10783184.
Pełny tekst źródłaSeghier, D., T. M. Arinbjarnason i H. P. Gislason. "Deep-defect related generation-recombination noise in GaAs". W 2004 13th International Conference on Semiconducting and Insulating Materials. IEEE, 2004. http://dx.doi.org/10.1109/sim.2005.1511426.
Pełny tekst źródłaLee, Jin Hee, i Je-Hyung Kim. "Point and planar defect complex in SiC nanowires for high-performance quantum emitters". W Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/iprsn.2022.iw2b.5.
Pełny tekst źródłaKhaital, Yu L., Joseph Salzman i R. Beserman. "Kinetics of gradual degradation in semiconductor lasers". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oam.1988.mj7.
Pełny tekst źródłaBonfiglió, A., M. Vanzi, M. B. Casu, F. Magistrali, M. Maini i G. Salmini. "Interpretation of Sudden Failures in Pump Laser Diodes". W ISTFA 1997. ASM International, 1997. http://dx.doi.org/10.31399/asm.cp.istfa1997p0189.
Pełny tekst źródłaLee, Jin Hee, i Je-Hyung Kim. "Strong Zero-Phonon Transition from Defects in SiC Nanowires with Stacking Faults". W Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/quantum.2023.qw2a.27.
Pełny tekst źródłaAskari, Syed Sadique Anwer, Manoj Kumar i Mukul Kumar Das. "Effects of Interface defect on the performance of ZnO/p-Si heterojunction solar cell". W JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.6p_a410_12.
Pełny tekst źródłaVerezub, N., i A. Prostomolotov. "DEFECT FORMATION IN DISLOCATION-FREE SILICON SINGLE CRYSTALS". W Mathematical modeling in materials science of electronic component. LCC MAKS Press, 2022. http://dx.doi.org/10.29003/m3091.mmmsec-2022/132-135.
Pełny tekst źródłaRacko, J., R. Granzner, P. Benko, M. Mikolasek, L. Harmatha, M. Kittler, F. Schwierz i J. Breza. "Model of coupled defect level recombination with participation of multiphonons". W 2014 10th International Conference on Advanced Semiconductor Devices & Microsystems (ASDAM). IEEE, 2014. http://dx.doi.org/10.1109/asdam.2014.6998674.
Pełny tekst źródłaGfroerer, T. H., P. R. Simov, B. A. West i M. W. Wanlass. "Defect-related trapping and recombination in metamorphic GaAs0.72P0.28 grown on GaAs". W 2008 33rd IEEE Photovolatic Specialists Conference (PVSC). IEEE, 2008. http://dx.doi.org/10.1109/pvsc.2008.4922904.
Pełny tekst źródłaRaporty organizacyjne na temat "Defect recombination"
Schild, David, i Claudia Wiese. Overexpressed of RAD51 suppresses recombination defects: a possible mechanism to reverse genomic instability. Office of Scientific and Technical Information (OSTI), październik 2009. http://dx.doi.org/10.2172/983266.
Pełny tekst źródła