Artykuły w czasopismach na temat „Deep Photonic Neural Networks”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Deep Photonic Neural Networks”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Pai, Sunil, Zhanghao Sun, Tyler W. Hughes, Taewon Park, Ben Bartlett, Ian A. D. Williamson, Momchil Minkov i in. "Experimentally realized in situ backpropagation for deep learning in photonic neural networks". Science 380, nr 6643 (28.04.2023): 398–404. http://dx.doi.org/10.1126/science.ade8450.
Pełny tekst źródłaSheng, Huayi. "Review of Integrated Diffractive Deep Neural Networks". Highlights in Science, Engineering and Technology 24 (27.12.2022): 264–78. http://dx.doi.org/10.54097/hset.v24i.3957.
Pełny tekst źródłaJiang, Jiaqi, i Jonathan A. Fan. "Multiobjective and categorical global optimization of photonic structures based on ResNet generative neural networks". Nanophotonics 10, nr 1 (22.09.2020): 361–69. http://dx.doi.org/10.1515/nanoph-2020-0407.
Pełny tekst źródłaMao, Simei, Lirong Cheng, Caiyue Zhao, Faisal Nadeem Khan, Qian Li i H. Y. Fu. "Inverse Design for Silicon Photonics: From Iterative Optimization Algorithms to Deep Neural Networks". Applied Sciences 11, nr 9 (23.04.2021): 3822. http://dx.doi.org/10.3390/app11093822.
Pełny tekst źródłaDang, Dharanidhar, Sai Vineel Reddy Chittamuru, Sudeep Pasricha, Rabi Mahapatra i Debashis Sahoo. "BPLight-CNN: A Photonics-Based Backpropagation Accelerator for Deep Learning". ACM Journal on Emerging Technologies in Computing Systems 17, nr 4 (31.10.2021): 1–26. http://dx.doi.org/10.1145/3446212.
Pełny tekst źródłaAhmed, Moustafa, Yas Al-Hadeethi, Ahmed Bakry, Hamed Dalir i Volker J. Sorger. "Integrated photonic FFT for photonic tensor operations towards efficient and high-speed neural networks". Nanophotonics 9, nr 13 (26.06.2020): 4097–108. http://dx.doi.org/10.1515/nanoph-2020-0055.
Pełny tekst źródłaSun, Yichen, Mingli Dong, Mingxin Yu, Jiabin Xia, Xu Zhang, Yuchen Bai, Lidan Lu i Lianqing Zhu. "Nonlinear All-Optical Diffractive Deep Neural Network with 10.6 μm Wavelength for Image Classification". International Journal of Optics 2021 (27.02.2021): 1–16. http://dx.doi.org/10.1155/2021/6667495.
Pełny tekst źródłaRen, Yangming, Lingxuan Zhang, Weiqiang Wang, Xinyu Wang, Yufang Lei, Yulong Xue, Xiaochen Sun i Wenfu Zhang. "Genetic-algorithm-based deep neural networks for highly efficient photonic device design". Photonics Research 9, nr 6 (24.05.2021): B247. http://dx.doi.org/10.1364/prj.416294.
Pełny tekst źródłaAsano, Takashi, i Susumu Noda. "Iterative optimization of photonic crystal nanocavity designs by using deep neural networks". Nanophotonics 8, nr 12 (16.11.2019): 2243–56. http://dx.doi.org/10.1515/nanoph-2019-0308.
Pełny tekst źródłaLi, Renjie, Xiaozhe Gu, Yuanwen Shen, Ke Li, Zhen Li i Zhaoyu Zhang. "Smart and Rapid Design of Nanophotonic Structures by an Adaptive and Regularized Deep Neural Network". Nanomaterials 12, nr 8 (16.04.2022): 1372. http://dx.doi.org/10.3390/nano12081372.
Pełny tekst źródłaShi, Bin, Nicola Calabretta i Ripalta Stabile. "Numerical Simulation of an InP Photonic Integrated Cross-Connect for Deep Neural Networks on Chip". Applied Sciences 10, nr 2 (9.01.2020): 474. http://dx.doi.org/10.3390/app10020474.
Pełny tekst źródłaSkontranis, Menelaos, George Sarantoglou, Stavros Deligiannidis, Adonis Bogris i Charis Mesaritakis. "Time-Multiplexed Spiking Convolutional Neural Network Based on VCSELs for Unsupervised Image Classification". Applied Sciences 11, nr 4 (3.02.2021): 1383. http://dx.doi.org/10.3390/app11041383.
Pełny tekst źródłaHaffner, Christian, Andreas Joerg, Michael Doderer, Felix Mayor, Daniel Chelladurai, Yuriy Fedoryshyn, Cosmin Ioan Roman i in. "Nano–opto-electro-mechanical switches operated at CMOS-level voltages". Science 366, nr 6467 (14.11.2019): 860–64. http://dx.doi.org/10.1126/science.aay8645.
Pełny tekst źródłaShi, Bin, Nicola Calabretta i Ripalta Stabile. "Emulation and modelling of semiconductor optical amplifier-based all-optical photonic integrated deep neural network with arbitrary depth". Neuromorphic Computing and Engineering 2, nr 3 (1.09.2022): 034010. http://dx.doi.org/10.1088/2634-4386/ac8827.
Pełny tekst źródłaChen, Xinyu, Renjie Li, Yueyao Yu, Yuanwen Shen, Wenye Li, Yin Zhang i Zhaoyu Zhang. "POViT: Vision Transformer for Multi-Objective Design and Characterization of Photonic Crystal Nanocavities". Nanomaterials 12, nr 24 (9.12.2022): 4401. http://dx.doi.org/10.3390/nano12244401.
Pełny tekst źródłaHegde, Ravi S. "Photonics Inverse Design: Pairing Deep Neural Networks With Evolutionary Algorithms". IEEE Journal of Selected Topics in Quantum Electronics 26, nr 1 (styczeń 2020): 1–8. http://dx.doi.org/10.1109/jstqe.2019.2933796.
Pełny tekst źródłaShi, Bin, Nicola Calabretta i Ripalta Stabile. "Deep Neural Network Through an InP SOA-Based Photonic Integrated Cross-Connect". IEEE Journal of Selected Topics in Quantum Electronics 26, nr 1 (styczeń 2020): 1–11. http://dx.doi.org/10.1109/jstqe.2019.2945548.
Pełny tekst źródłaHead, Sarah, i Mehdi Keshavarz Hedayati. "Inverse Design of Distributed Bragg Reflectors Using Deep Learning". Applied Sciences 12, nr 10 (11.05.2022): 4877. http://dx.doi.org/10.3390/app12104877.
Pełny tekst źródłaMeng, Xiangyan, Nuannuan Shi, Guangyi Li, Wei Li, Ninghua Zhu i Ming Li. "Optical Convolutional Neural Networks: Methodology and Advances (Invited)". Applied Sciences 13, nr 13 (26.06.2023): 7523. http://dx.doi.org/10.3390/app13137523.
Pełny tekst źródłaPanusa, Giulia, Niyazi Ulas Dinc i Demetri Psaltis. "Photonic waveguide bundles using 3D laser writing and deep neural network image reconstruction". Optics Express 30, nr 2 (11.01.2022): 2564. http://dx.doi.org/10.1364/oe.446775.
Pełny tekst źródłaTu, Xin, Wansheng Xie, Zhenmin Chen, Ming-Feng Ge, Tianye Huang, Chaolong Song i H. Y. Fu. "Analysis of Deep Neural Network Models for Inverse Design of Silicon Photonic Grating Coupler". Journal of Lightwave Technology 39, nr 9 (1.05.2021): 2790–99. http://dx.doi.org/10.1109/jlt.2021.3057473.
Pełny tekst źródłaAlagappan, Gandhi, Jun Rong Ong, Zaifeng Yang, Thomas Yong Long Ang, Weijiang Zhao, Yang Jiang, Wenzu Zhang i Ching Eng Png. "Leveraging AI in Photonics and Beyond". Photonics 9, nr 2 (28.01.2022): 75. http://dx.doi.org/10.3390/photonics9020075.
Pełny tekst źródłaHamerly, Ryan. "The Future of Deep Learning Is Photonic: Reducing the energy needs of neural networks might require computing with light". IEEE Spectrum 58, nr 7 (lipiec 2021): 30–47. http://dx.doi.org/10.1109/mspec.2021.9475393.
Pełny tekst źródłaLi, Caiyun, Jiangyong He, Yange Liu, Yang Yue, Luhe Zhang, Longfei Zhu, Mengjie Zhou, Congcong Liu, Kaiyan Zhu i Zhi Wang. "Comparing Performance of Deep Convolution Networks in Reconstructing Soliton Molecules Dynamics from Real-Time Spectral Interference". Photonics 8, nr 2 (13.02.2021): 51. http://dx.doi.org/10.3390/photonics8020051.
Pełny tekst źródłaZhou, Yuewen, Fangzheng Zhang, Jingzhan Shi i Shilong Pan. "Deep neural network-assisted high-accuracy microwave instantaneous frequency measurement with a photonic scanning receiver". Optics Letters 45, nr 11 (27.05.2020): 3038. http://dx.doi.org/10.1364/ol.391883.
Pełny tekst źródłaMirsu, Radu, Georgiana Simion, Catalin Daniel Caleanu i Ioana Monica Pop-Calimanu. "A PointNet-Based Solution for 3D Hand Gesture Recognition". Sensors 20, nr 11 (5.06.2020): 3226. http://dx.doi.org/10.3390/s20113226.
Pełny tekst źródłaVillegas Burgos, Carlos Mauricio, i Nickolas Vamivakas. "Challenges in the Path Toward a Scalable Silicon Photonics Implementation of Deep Neural Networks". IEEE Journal of Quantum Electronics 55, nr 5 (październik 2019): 1–10. http://dx.doi.org/10.1109/jqe.2019.2934758.
Pełny tekst źródłaLi, Fengrong, Yifan Sun i XiangDong Zhang. "Deep-learning-based quantum imaging using NOON states". Journal of Physics Communications 6, nr 3 (1.03.2022): 035005. http://dx.doi.org/10.1088/2399-6528/ac5e25.
Pełny tekst źródłaYao, Kan, Rohit Unni i Yuebing Zheng. "Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale". Nanophotonics 8, nr 3 (25.01.2019): 339–66. http://dx.doi.org/10.1515/nanoph-2018-0183.
Pełny tekst źródłaAi, Xiaocong, Shih-Chieh Hsu, Ke Li i Chih-Ting Lu. "Probing highly collimated photon-jets with deep learning". Journal of Physics: Conference Series 2438, nr 1 (1.02.2023): 012114. http://dx.doi.org/10.1088/1742-6596/2438/1/012114.
Pełny tekst źródłaVlimant, Jean-Roch, Felice Pantaleo, Maurizio Pierini, Vladimir Loncar, Sofia Vallecorsa, Dustin Anderson, Thong Nguyen i Alexander Zlokapa. "Large-Scale Distributed Training Applied to Generative Adversarial Networks for Calorimeter Simulation". EPJ Web of Conferences 214 (2019): 06025. http://dx.doi.org/10.1051/epjconf/201921406025.
Pełny tekst źródłaMassari, Luca, Giulia Fransvea, Jessica D’Abbraccio, Mariangela Filosa, Giuseppe Terruso, Andrea Aliperta, Giacomo D’Alesio i in. "Functional mimicry of Ruffini receptors with fibre Bragg gratings and deep neural networks enables a bio-inspired large-area tactile-sensitive skin". Nature Machine Intelligence 4, nr 5 (maj 2022): 425–35. http://dx.doi.org/10.1038/s42256-022-00487-3.
Pełny tekst źródłaNakadai, Masahiro, Kengo Tanaka, Takashi Asano, Yasushi Takahashi i Susumu Noda. "Statistical evaluation of Q factors of fabricated photonic crystal nanocavities designed by using a deep neural network". Applied Physics Express 13, nr 1 (3.12.2019): 012002. http://dx.doi.org/10.7567/1882-0786/ab5978.
Pełny tekst źródłaZhao, Zeyu, Jie You, Jun Zhang i Yuhua Tang. "Data-Enhanced Deep Greedy Optimization Algorithm for the On-Demand Inverse Design of TMDC-Cavity Heterojunctions". Nanomaterials 12, nr 17 (28.08.2022): 2976. http://dx.doi.org/10.3390/nano12172976.
Pełny tekst źródłaGan, Linqiao, Fei Yu, Yazhou Wang, Ning Wang, Xinyue Zhu, Lili Hu i Chunlei Yu. "Dispersion-Oriented Inverse Design of Photonic-Crystal Fiber for Four-Wave Mixing Application". Photonics 10, nr 3 (10.03.2023): 294. http://dx.doi.org/10.3390/photonics10030294.
Pełny tekst źródłaXie, Tangyao, i Jianguo Yu. "4Gbaud PS-16QAM D-Band Fiber-Wireless Transmission Over 4.6 km by Using Balance Complex-Valued NN Equalizer with Random Oversampling". Sensors 23, nr 7 (31.03.2023): 3655. http://dx.doi.org/10.3390/s23073655.
Pełny tekst źródłaShinde, Ashwini, i Prof Madhav Ingle. "Hybrid Approach for Skin Disease Classification: Integrating Machine learning and Deep Learning". International Journal for Research in Applied Science and Engineering Technology 11, nr 5 (31.05.2023): 3243–48. http://dx.doi.org/10.22214/ijraset.2023.52338.
Pełny tekst źródłaReddy, G. Mahesh, P. Hema Venkata Ramana, Ponnuru Anusha, Battula Kalyan Chakravarthy, Aravinda Kasukurthi i Vaddempudi Sujatha Lakshmi. "A Survey on Sugarcane Leaf Disease Identification Using Deep Learning Technique(CNN)". International Journal on Recent and Innovation Trends in Computing and Communication 11, nr 5 (17.05.2023): 248–54. http://dx.doi.org/10.17762/ijritcc.v11i5.6611.
Pełny tekst źródłaValsecchi, Davide. "Deep learning techniques for energy clustering in the CMS ECAL". Journal of Physics: Conference Series 2438, nr 1 (1.02.2023): 012077. http://dx.doi.org/10.1088/1742-6596/2438/1/012077.
Pełny tekst źródłaOrban de Xivry, G., M. Quesnel, P.-O. Vanberg, O. Absil i G. Louppe. "Focal plane wavefront sensing using machine learning: performance of convolutional neural networks compared to fundamental limits". Monthly Notices of the Royal Astronomical Society 505, nr 4 (9.06.2021): 5702–13. http://dx.doi.org/10.1093/mnras/stab1634.
Pełny tekst źródłaWoods, Damien, i Thomas J. Naughton. "Photonic neural networks". Nature Physics 8, nr 4 (kwiecień 2012): 257–59. http://dx.doi.org/10.1038/nphys2283.
Pełny tekst źródłaBrunner, Daniel, i Demetri Psaltis. "Competitive photonic neural networks". Nature Photonics 15, nr 5 (30.04.2021): 323–24. http://dx.doi.org/10.1038/s41566-021-00803-0.
Pełny tekst źródłaYan, Ye-Peng, Guo-Jian Wang, Si-Yu Li i Jun-Qing Xia. "Delensing of Cosmic Microwave Background Polarization with Machine Learning". Astrophysical Journal Supplement Series 267, nr 1 (27.06.2023): 2. http://dx.doi.org/10.3847/1538-4365/acd2ce.
Pełny tekst źródłaDe Marinis, Lorenzo, Marco Cococcioni, Piero Castoldi i Nicola Andriolli. "Photonic Neural Networks: A Survey". IEEE Access 7 (2019): 175827–41. http://dx.doi.org/10.1109/access.2019.2957245.
Pełny tekst źródłaSunny, Febin P., Ebadollah Taheri, Mahdi Nikdast i Sudeep Pasricha. "A Survey on Silicon Photonics for Deep Learning". ACM Journal on Emerging Technologies in Computing Systems 17, nr 4 (30.06.2021): 1–57. http://dx.doi.org/10.1145/3459009.
Pełny tekst źródłaPadilla-Zepeda, Efrain, Deni Torres-Roman i Andres Mendez-Vazquez. "A Semantic Segmentation Framework for Hyperspectral Imagery Based on Tucker Decomposition and 3DCNN Tested with Simulated Noisy Scenarios". Remote Sensing 15, nr 5 (1.03.2023): 1399. http://dx.doi.org/10.3390/rs15051399.
Pełny tekst źródłaSun, Miao, Shenglong Zhuo i Patrick Yin Chiang. "Multi-Scale Histogram-Based Probabilistic Deep Neural Network for Super-Resolution 3D LiDAR Imaging". Sensors 23, nr 1 (30.12.2022): 420. http://dx.doi.org/10.3390/s23010420.
Pełny tekst źródłaStark, Pascal, Folkert Horst, Roger Dangel, Jonas Weiss i Bert Jan Offrein. "Opportunities for integrated photonic neural networks". Nanophotonics 9, nr 13 (10.08.2020): 4221–32. http://dx.doi.org/10.1515/nanoph-2020-0297.
Pełny tekst źródłaFarhat, N. H. "Photonic neural networks and learning machines". IEEE Expert 7, nr 5 (październik 1992): 63–72. http://dx.doi.org/10.1109/64.163674.
Pełny tekst źródłaDemirkiran, Cansu, Furkan Eris, Gongyu Wang, Jonathan Elmhurst, Nick Moore, Nicholas C. Harris, Ayon Basumallik, Vijay Janapa Reddi, Ajay Joshi i Darius Bunandar. "An Electro-Photonic System for Accelerating Deep Neural Networks". ACM Journal on Emerging Technologies in Computing Systems, 12.07.2023. http://dx.doi.org/10.1145/3606949.
Pełny tekst źródła