Gotowa bibliografia na temat „Deep eutectic solvent-based systems”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Deep eutectic solvent-based systems”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Deep eutectic solvent-based systems"
Liu, Xiangwei, Qian Ao, Shengyou Shi i Shuie Li. "CO2 capture by alcohol ammonia based deep eutectic solvents with different water content". Materials Research Express 9, nr 1 (1.01.2022): 015504. http://dx.doi.org/10.1088/2053-1591/ac47c6.
Pełny tekst źródłaMajová, Veronika, Silvia Horanová, Andrea Škulcová, Jozef Šima i Michal Jablonský. "Deep eutectic solvent delignification: Impact of initial lignin". BioResources 12, nr 4 (21.08.2017): 7301–10. http://dx.doi.org/10.15376/biores.12.4.7301-7310.
Pełny tekst źródłaVuksanovic, Jelena, Nina Todorovic, Mirjana Kijevcanin, Slobodan Serbanovic i Ivona Radovic. "Experimental investigation and modeling of thermophysical and extraction properties of choline chloride + DL-malic acid based deep eutectic solvent". Journal of the Serbian Chemical Society 82, nr 11 (2017): 1287–302. http://dx.doi.org/10.2298/jsc170316054v.
Pełny tekst źródłaDugoni, Greta Colombo, Maria E. Di Pietro, Monica Ferro, Franca Castiglione, Steven Ruellan, Tarek Moufawad, Leila Moura, Margarida F. Costa Gomes, Sophie Fourmentin i Andrea Mele. "Effect of Water on Deep Eutectic Solvent/β-Cyclodextrin Systems". ACS Sustainable Chemistry & Engineering 7, nr 7 (marzec 2019): 7277–85. http://dx.doi.org/10.1021/acssuschemeng.9b00315.
Pełny tekst źródłaSchuur, Boelo, Thomas Brouwer i Lisette M. J. Sprakel. "Recent Developments in Solvent-Based Fluid Separations". Annual Review of Chemical and Biomolecular Engineering 12, nr 1 (7.06.2021): 573–91. http://dx.doi.org/10.1146/annurev-chembioeng-102620-015346.
Pełny tekst źródłaPark, Tae-Joon, i Sang Hyun Lee. "Deep eutectic solvent systems for FeCl3-catalyzed oxidative polymerization of 3-octylthiophene". Green Chemistry 19, nr 4 (2017): 910–13. http://dx.doi.org/10.1039/c6gc02789j.
Pełny tekst źródłaTeixeira, Gabriel, Dinis O. Abranches, Liliana P. Silva, Sérgio M. Vilas-Boas, Simão P. Pinho, Ana I. M. C. L. Ferreira, Luís M. N. B. F. Santos, Olga Ferreira i João A. P. Coutinho. "Liquefying Flavonoids with Terpenoids through Deep Eutectic Solvent Formation". Molecules 27, nr 9 (20.04.2022): 2649. http://dx.doi.org/10.3390/molecules27092649.
Pełny tekst źródłaAbdallah, Maha M., Simon Müller, Andrés González de Castilla, Pavel Gurikov, Ana A. Matias, Maria do Rosário Bronze i Naiara Fernández. "Physicochemical Characterization and Simulation of the Solid–Liquid Equilibrium Phase Diagram of Terpene-Based Eutectic Solvent Systems". Molecules 26, nr 6 (23.03.2021): 1801. http://dx.doi.org/10.3390/molecules26061801.
Pełny tekst źródłaMarchel, Mateusz, Ana Sofia Coroadinha i Isabel M. Marrucho. "Novel Acidic Deep Eutectic Solvent-Based Aqueous Biphasic Systems for Efficient Extraction of Pepsin". ACS Sustainable Chemistry & Engineering 8, nr 33 (22.07.2020): 12400–12408. http://dx.doi.org/10.1021/acssuschemeng.0c02673.
Pełny tekst źródłaFarias, Fabiane Oliveira, Helena Passos, João A. P. Coutinho i Marcos R. Mafra. "pH Effect on the Formation of Deep-Eutectic-Solvent-Based Aqueous Two-Phase Systems". Industrial & Engineering Chemistry Research 57, nr 49 (19.11.2018): 16917–24. http://dx.doi.org/10.1021/acs.iecr.8b04256.
Pełny tekst źródłaRozprawy doktorskie na temat "Deep eutectic solvent-based systems"
Bezold, Franziska [Verfasser], Mirjana [Akademischer Betreuer] Minceva, Irina [Gutachter] Smirnova, Mirjana [Gutachter] Minceva i Harald [Gutachter] Klein. "Deep eutectic solvent- and ionic liquid-based biphasic systems in centrifugal partition chromatography / Franziska Bezold ; Gutachter: Irina Smirnova, Mirjana Minceva, Harald Klein ; Betreuer: Mirjana Minceva". München : Universitätsbibliothek der TU München, 2019. http://d-nb.info/1203299745/34.
Pełny tekst źródłaPadmanabhan, Ramalekshmi Thanu Dinesh. "USE OF DILUTE HYDROFLUORIC ACID AND DEEP EUTECTIC SOLVENT SYSTEMS FOR BACK END OF LINE CLEANING IN INTEGRATED CIRCUIT FABRICATION". Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/202981.
Pełny tekst źródłaKellat, Libby Nicole. "Model Chemistry Study Of Choline And Urea Based Deep Eutectic Solvents". Cleveland State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=csu1545074963407735.
Pełny tekst źródłaFullarton, Claire. "Working towards a new sustainable rechargeable battery : zinc, conducting polymer and deep eutectic solvent system". Thesis, University of Leicester, 2015. http://hdl.handle.net/2381/31863.
Pełny tekst źródłaOrejuela, Lourdes Magdalena. "Lignocellulose deconstruction using glyceline and a chelator-mediated Fenton system". Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/81255.
Pełny tekst źródłaPh. D.
Wood is a valuable material that can be used to produce liquid biofuels. Wood main components are biopolymers cellulose, hemicellulose and lignin that form a complex structure. Nature has locked up cellulose in a protective assembly that needs to be destroyed to gain access to cellulose, convert it to glucose and then ferment it to bioalcohol. This process is principally associated with limited enzyme accessibility. Therefore, biomass pretreatments that deconstruct native cell wall structure and allow enzyme access are required for effective biomass conversion techniques. This research studied two novel pretreatment methods on two wood species: 1) a deep eutectic solvent called glyceline that, under heat, swells wood and partially solubilizes cell wall materials by causing breakage of bonds and converting it into smaller molecules (monomers and oligomers), and 2) a chelator-mediated Fenton system (CMF) that chemically modifies the structure of the cell wall. Pretreatments were tested individually and in sequence in sweetgum and southern yellow pine. After pretreatments, utilizing analytical techniques, fractions were investigated for chemical and structural changes in the solubilized and residual materials. Treated wood samples were exposed to enzymatic conversion. A maximum 78% of glucose yield was obtained for the glyceline followed by CMF pretreated wood. For yellow pine only a 24% of glucose yield was obtained for the CMF followed by glyceline treatment. All these pretreatments presented different degrees of biopolymer removal from the cell wall and subsequent enzyme conversion levels. Overall, these studies revealed insight into two novel methods to enhance wood conversion adding to the methodology to deconstruct cell walls for fermentable sugars.
Taubert, Jenny. "Use of Formulations Based On Choline Chloride-Malonic Acid Deep Eutectic Solvent for Back End of Line Cleaning in Integrated Circuit Fabrication". Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/283692.
Pełny tekst źródłaOjala, J. (Jonna). "Functionalized cellulose nanoparticles in the stabilization of oil-in-water emulsions:bio-based approach to chemical oil spill response". Doctoral thesis, Oulun yliopisto, 2019. http://urn.fi/urn:isbn:9789526222417.
Pełny tekst źródłaTiivistelmä Uusiutuva, biohajoava ja helposti saatavilla oleva nanoselluloosa on merkittävä tulevaisuuden raaka-aine useissa erilaisissa käyttökohteissa. Sen ylivertaiset ominaisuudet, kuten lujuus, keveys, läpinäkyvyys ja lämmöneristävyys ovat olleet innoittamassa nanoselluloosan tutkimusta ja tuotekehitystä. Nanoselluloosan mahdollisuuksia ja käyttöä eri sovelluksissa korvaamaan esimerkiksi uusiutumattomista luonnonvaroista valmistettuja kemikaaleja, pidetään erittäin lupaavina. Kemiallisesta funktionalisoinnista eli selluloosan pintaominaisuuksien muokkauksesta nähdään olevan hyötyä, kun tavoitellaan nanoselluloosan toiminnallisuutta esimerkiksi hydrofobista luonnetta vaativissa sovelluksissa pinta-aktiivisen aineen tavoin. Tässä työssä tutkittiin erityisesti nanoselluloosapartikkeleiden kykyä stabiloida öljypisaroita dieselöljy-vesiemulsioissa. Tutkimuksen päämääränä oli selvittää mahdollisuutta kehittää uudentyyppistä, ”vihreää” öljyntorjuntakemikaalia selluloosasta. Tämän vuoksi selluloosaa muokattiin kemiallisesti vesiympäristössä yhdistetyllä hapetus- ja aminointikäsittelyllä, mikä lisäsi valmistetun nanoselluloosan hydrofobisuutta. Toisena käsittelyvaihtoehtona tutkittiin syväeutektisten liuottimien käyttöä sekä muokattujen (sukkinyloidut ja karboksyloidut) että muokkaamattomien nanoselluloosapartikkeleiden valmistuksessa. Raaka-aineina työssä käytettiin kemiallista sellumassaa, liukosellua sekä puolikemiallista hienokuitua. Työn tuloksena voidaan todeta, että nanoselluloosasta valmistetut kemiallisesti muokatut (funktionalisoidut) nanopartikkelit toimivat hyvin öljy-vesiemulsiossa estäen emulsion öljypisaroiden yhteensulautumista. Nanopartikkelit stabiloivat emulsiossa olevan öljyn hyvin pieniksi pisaroiksi hidastaen kermottumista eli emulsion yleistä faasierottumista. Nanoselluloosan funktionalisointi paransi sen kykyä hakeutua öljy-vesi rajapintaan, mahdollistaen tehokkaan ja palautumattoman adsorption. Havaittiin, että pienen kokonsa vuoksi selluloosananokiteet pystyivät pakkautumaan tiiviimmin öljyn pinnalle, kun taas selluloosananokuidut, jotka ovat pidempiä, muodostivat verkkomaisen rakenteen myös öljypisaroiden väliin. Suolan lisäys vaikutti emulsion stabiilisuuteen vaihtelevasti eri näytteiden välillä, kun taas kylmät olosuhteet poikkeuksetta paransivat stabiilisuutta
Dong, Ji-Yao, i 董繼堯. "An Antisolvent Approach to Nanostructure ZnO Using Choline Chloride Based Deep Eutectic Solvent". Thesis, 2010. http://ndltd.ncl.edu.tw/handle/27413680483977606118.
Pełny tekst źródła國立清華大學
化學工程學系
99
In this article, we demonstrate a new, facile and green antisolvent process to prepare nanostructure ZnO. The deep eutectic solvent (DES) is a new class green solvent that is negligible vapor pressure, high polar and biocompatible. UCC is one of DES that shows high solubility of many metal oxides that can be used as solvent in this approach. The antisolvent should be miscible with the DES UCC and non-solvent for the solute. By controlling the nucleation and growth, various morphologies of ZnO can be made by this method. At low ZnO concentration in UCC, ZnO twin-cone and rods can be prepared with morphology and size controls by injection rate and the ethanol content in antisolvent. The ethanol in the antisolvent can reduce the growth rate of ZnO and also lower the product dimensions. If the injection rate of ZnO-containing DES was reduced, the supply of Zn source became limited and the crystal growth became 1D dominated and grows on the preferred direction. It turns the product structure from twin-cones to nanorods. Mesocrystal ZnO is a mesoporous material fabricated from nanocrystals (NCs) with ordered orientation superstructure. Thus the material possesses high surface area and good crystallinity as single crystal. We use a biological buffer Tris as an oriented agent in antisolvent. ZnO NCs were made in antisolvent then Tris can increase the concentration of hydroxyl group in antisolvent. The hydroxyl group can attach on the oxygen vacancies on the polar O-terminated surface then increased the polarity of the ZnO NCs and then be attached together with the same orientation to form a mesocrystal ZnO. The increasing amount of Tris can make a larger size, better crystallinity and smaller surface area mesocrystal ZnO. The crystallinity is the more important factor rather than surface area. Thus a mesocrystal ZnO prepared in high Tris concentration shows better photocatalytic reactivity. At high ZnO dissolved concentration and low injection rate, the ZnO-ZCH nanosheet can be made by this antisolvent approach. After the annealing, single crystal mesoporous ZnO nanosheet can be parpared. The sheet is thin with a thickness of 10 nm and many pores with size of 5-60 nm can be found on the nanosheets. The ZnO nanosheet is single crystal and high surface area (~90 m2/g) with the exposed plane of (11-20). It can be used as photocatalyst for degradation of methylene blue (MB) in aqueous solution. The single crystal mesocrystal ZnO nanosheet shows performance as good as TiO2 P25.
SUPRARUKMI, DIANITA DINI, i 蘇霓娜. "An Optimum Process on the Electrodeposition on Copper Substrate Using Deep Eutectic Solvent Based on Choline Chloride–Glycerol". Thesis, 2015. http://ndltd.ncl.edu.tw/handle/08615400802501499124.
Pełny tekst źródła國立臺灣科技大學
化學工程系
103
Electrodeposition of metals such as Zn, Co, and Ni has been shown possible in a wide range of ionic liquids. A deep eutectic solvent (DES) is new generation of ionic liquid, which can replace the traditional ionic liquid (IL) and act as both a solvent and an electrolyte. Commonly, DESs based on ChCl–urea and ChCl–ethylene glycol have been used for the deposition process. In this thesis, the study was about searching the ChCl based DESs to be used as suitable electrolyte towards the electrodeposition. The electrochemical characterization of metals to be electrodeposited was carried out using cyclic voltammetry at 70 oC. The results showed that the reaction of metal(II) to metal(0) was irreversible. The diffusion coefficients of metals were in the range of 1–2.5 x 10-7 cm2/s at 70 oC. Initially, 5 different DESs were tested as the electrolyte and the best electrolyte was chosen for the optimization process on the system. Electrodeposition of metals was studied at different cathodic potentials, metal salt concentrations, and working temperatures in order to optimized the plating process. The metal deposits were characterized using scanning electron microscope (SEM), energy disperse X-ray spectroscopy (EDX), and X-ray diffraction (XRD). The results of metal deposits showed that the process proceeds smoothly in DES from ChCl–glycerol at a lower temperature (40 oC). EDS and XRD analysis confirmed that high-purity metallic deposits were obtained.
Części książek na temat "Deep eutectic solvent-based systems"
Ramezani, Amir M., Yadollah Yamini i Raheleh Ahmadi. "Deep Eutectic Solvent-Based Microextraction". W Microextraction Techniques in Analytical Toxicology, 221–37. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003128298-14.
Pełny tekst źródłaShahbaz, K., I. M. AlNashef, R. J. T. Lin, M. A. Hashim, F. S. Mjalli i Mohammed Farid. "A Novel Calcium Chloride Hexahydrate-Based Deep Eutectic Solvent as a Phase Change Material". W Thermal Energy Storage with Phase Change Materials, 51–66. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780367567699-5.
Pełny tekst źródłaChai, Sophie Jing Nee, Xiao-Qian Fu, Dong-Qiang Lin i Pau Loke Show. "Sugar-based deep eutectic solvent-aqueous two-phase system". W Principles of Multiple-Liquid Separation Systems, 63–80. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-91728-5.00016-0.
Pełny tekst źródłaTrivedi, Shruti, Shreya Juneja, Vaishali Khokhar i Siddharth Pandey. "Solvation within deep eutectic solvent-based systems: A review". W Green Sustainable Process for Chemical and Environmental Engineering and Science, 145–92. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-95156-2.00013-1.
Pełny tekst źródłaSong, Zhen, Teng Zhou, Zhiwen Qi i Kai Sundmacher. "Computer-Aided Screening of Deep Eutectic Solvent Systems for the Associative Extraction of α-Tocopherol from Deodorizer Distillate". W 31st European Symposium on Computer Aided Process Engineering, 341–46. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-323-88506-5.50054-1.
Pełny tekst źródła"Avoid Auxiliaries". W Green Chemistry: Principles and Case Studies, 125–68. The Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/bk9781788017985-00125.
Pełny tekst źródłaKruber, Kai Fabian, Mariann Kroll, Christoph Held i Mirko Skiborowski. "Evaluation of the potential of a deep eutectic solvent for liquid-liquid extraction of furfural using optimization-based process design". W Computer Aided Chemical Engineering, 955–60. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-443-15274-0.50152-9.
Pełny tekst źródłaStreszczenia konferencji na temat "Deep eutectic solvent-based systems"
Šalić, Anita, Anabela Ljubić i Bruno Zelić. "Development of Aqueous Two-Phase Systems Based on Deep Eutectic Solvents for Continuous Protein Extraction in A Microextractor". W Micromachines 2021 — 1st International Conference on Micromachines and Applications (ICMA2021). Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/micromachines2021-09546.
Pełny tekst źródłaNiawanti, Helda, Siti Zullaikah i M. Rachimoellah. "Purification of biodiesel by choline chloride based deep eutectic solvent". W INTERNATIONAL SEMINAR ON FUNDAMENTAL AND APPLICATION OF CHEMICAL ENGINEERING 2016 (ISFAChE 2016): Proceedings of the 3rd International Seminar on Fundamental and Application of Chemical Engineering 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4982280.
Pełny tekst źródłaGojun, Martin, Sara Anđelović, Marko Božinović, Željka Ćurić, Kristina Zagajski Kučan, Anita Šalić i Bruno Zelić. "Purification of biodiesel produced by lipase catalysed transesterification by two-phase systems based on deep eutectic solvents in a microextractor: Selection of solvents and process optimization". W Micromachines 2021 — 1st International Conference on Micromachines and Applications (ICMA2021). Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/micromachines2021-09592.
Pełny tekst źródłaTaslim, Leonardo Indra, Renita Manurung, Agus Winarta i Debbie Aditia Ramadhani. "Biodiesel production from ethanolysis of DPO using deep eutectic solvent (DES) based choline chloride – ethylene glycol as co-solvent". W PROCEEDINGS FROM THE 14TH INTERNATIONAL SYMPOSIUM ON THERAPEUTIC ULTRASOUND. Author(s), 2017. http://dx.doi.org/10.1063/1.4978079.
Pełny tekst źródłaOthman, Zetty Shafiqa, Nur Hasyareeda Hassan i Saiful Irwan Zubairi. "Alcohol based-deep eutectic solvent (DES) as an alternative green additive to increase rotenone yield". W THE 2015 UKM FST POSTGRADUATE COLLOQUIUM: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2015 Postgraduate Colloquium. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4931283.
Pełny tekst źródłaOvsyannikova, V. S., i A. G. Shcherbakova. "Influence of composition based on deep eutectic solvent on biodestruction of oils of different composition". W PROCEEDINGS OF THE INTERNATIONAL CONFERENCE “PHYSICAL MESOMECHANICS. MATERIALS WITH MULTILEVEL HIERARCHICAL STRUCTURE AND INTELLIGENT MANUFACTURING TECHNOLOGY”. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0084751.
Pełny tekst źródłaAl-Weheibi, I., R. Al-Hajri, Y. Al-Wahaibi, B. Jibril i A. Mohsenzadeh. "Oil Recovery Enhancement in Middle East Heavy Oil Field using Malonic Acid based Deep Eutectic Solvent". W SPE Middle East Oil & Gas Show and Conference. Society of Petroleum Engineers, 2015. http://dx.doi.org/10.2118/172592-ms.
Pełny tekst źródłaManurung, Renita, Ardian Syahputra, Muhammad Arif Alhamdi, Siti Maisarah i Debbie Aditia Ramadhani. "Degummed palm oil methanolysis process using Choline Chloride (ChCl) and glycerol based Deep Eutectic Solvent (DES) as co-solvent at biodiesel production". W 2017 International Conference on Sustainable Energy Engineering and Application (ICSEEA). IEEE, 2017. http://dx.doi.org/10.1109/icseea.2017.8267697.
Pełny tekst źródłaTan, Shiou Xuan, Andri Andriyana, Steven Lim, Hwai Chyuan Ong, Yean Ling Pang i Gek Cheng Ngoh. "Natural Deep Eutectic Solvent (NADES) as Plasticizer for Bioplastic Film Fabrication. A Comparative Study". W International Technical Postgraduate Conference 2022. AIJR Publisher, 2022. http://dx.doi.org/10.21467/proceedings.141.23.
Pełny tekst źródłaKrisanti, Elsa Anisa, Kelvin Saputra, Muhammad Maula Arif i Kamarza Mulia. "Formulation and characterization of betaine-based deep eutectic solvent for extraction phenolic compound from spent coffee grounds". W PROCEEDINGS OF THE 5TH INTERNATIONAL SYMPOSIUM ON APPLIED CHEMISTRY 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5134604.
Pełny tekst źródła