Artykuły w czasopismach na temat „Deep Discriminative Probabilistic Models”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Deep Discriminative Probabilistic Models”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Kamran, Fahad, and Jenna Wiens. "Estimating Calibrated Individualized Survival Curves with Deep Learning." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 1 (2021): 240–48. http://dx.doi.org/10.1609/aaai.v35i1.16098.
Pełny tekst źródłaAl Moubayed, Noura, Stephen McGough, and Bashar Awwad Shiekh Hasan. "Beyond the topics: how deep learning can improve the discriminability of probabilistic topic modelling." PeerJ Computer Science 6 (January 27, 2020): e252. http://dx.doi.org/10.7717/peerj-cs.252.
Pełny tekst źródłaBhattacharya, Debswapna. "refineD: improved protein structure refinement using machine learning based restrained relaxation." Bioinformatics 35, no. 18 (2019): 3320–28. http://dx.doi.org/10.1093/bioinformatics/btz101.
Pełny tekst źródłaWu, Boxi, Jie Jiang, Haidong Ren, et al. "Towards In-Distribution Compatible Out-of-Distribution Detection." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 9 (2023): 10333–41. http://dx.doi.org/10.1609/aaai.v37i9.26230.
Pełny tekst źródłaRoy, Debaditya, Sarunas Girdzijauskas, and Serghei Socolovschi. "Confidence-Calibrated Human Activity Recognition." Sensors 21, no. 19 (2021): 6566. http://dx.doi.org/10.3390/s21196566.
Pełny tekst źródłaTsuda, Koji, Motoaki Kawanabe, Gunnar Rätsch, Sören Sonnenburg, and Klaus-Robert Müller. "A New Discriminative Kernel from Probabilistic Models." Neural Computation 14, no. 10 (2002): 2397–414. http://dx.doi.org/10.1162/08997660260293274.
Pełny tekst źródłaAhmed, Nisar, and Mark Campbell. "On estimating simple probabilistic discriminative models with subclasses." Expert Systems with Applications 39, no. 7 (2012): 6659–64. http://dx.doi.org/10.1016/j.eswa.2011.12.042.
Pełny tekst źródłaDu, Fang, Jiangshe Zhang, Junying Hu, and Rongrong Fei. "Discriminative multi-modal deep generative models." Knowledge-Based Systems 173 (June 2019): 74–82. http://dx.doi.org/10.1016/j.knosys.2019.02.023.
Pełny tekst źródłaChe, Tong, Xiaofeng Liu, Site Li, et al. "Deep Verifier Networks: Verification of Deep Discriminative Models with Deep Generative Models." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 8 (2021): 7002–10. http://dx.doi.org/10.1609/aaai.v35i8.16862.
Pełny tekst źródłaMasegosa, Andrés R., Rafael Cabañas, Helge Langseth, Thomas D. Nielsen, and Antonio Salmerón. "Probabilistic Models with Deep Neural Networks." Entropy 23, no. 1 (2021): 117. http://dx.doi.org/10.3390/e23010117.
Pełny tekst źródłaJong Kyoung Kim and Seungjin Choi. "Probabilistic Models for Semisupervised Discriminative Motif Discovery in DNA Sequences." IEEE/ACM Transactions on Computational Biology and Bioinformatics 8, no. 5 (2011): 1309–17. http://dx.doi.org/10.1109/tcbb.2010.84.
Pełny tekst źródłaFang, Yi, Luo Si, and Aditya P. Mathur. "Discriminative probabilistic models for expert search in heterogeneous information sources." Information Retrieval 14, no. 2 (2010): 158–77. http://dx.doi.org/10.1007/s10791-010-9139-3.
Pełny tekst źródłaAhmed, Nisar, and Mark Campbell. "Variational Bayesian Learning of Probabilistic Discriminative Models With Latent Softmax Variables." IEEE Transactions on Signal Processing 59, no. 7 (2011): 3143–54. http://dx.doi.org/10.1109/tsp.2011.2144587.
Pełny tekst źródłaWu, Ying Nian, Ruiqi Gao, Tian Han, and Song-Chun Zhu. "A tale of three probabilistic families: Discriminative, descriptive, and generative models." Quarterly of Applied Mathematics 77, no. 2 (2018): 423–65. http://dx.doi.org/10.1090/qam/1528.
Pełny tekst źródłaQin, Huafeng, and Peng Wang. "Finger-Vein Verification Based on LSTM Recurrent Neural Networks." Applied Sciences 9, no. 8 (2019): 1687. http://dx.doi.org/10.3390/app9081687.
Pełny tekst źródłaVillanueva Llerena, Julissa, and Denis Deratani Maua. "Efficient Predictive Uncertainty Estimators for Deep Probabilistic Models." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 10 (2020): 13740–41. http://dx.doi.org/10.1609/aaai.v34i10.7142.
Pełny tekst źródłaChu, Joseph Lin, and Adam Krzyźak. "The Recognition Of Partially Occluded Objects with Support Vector Machines, Convolutional Neural Networks and Deep Belief Networks." Journal of Artificial Intelligence and Soft Computing Research 4, no. 1 (2014): 5–19. http://dx.doi.org/10.2478/jaiscr-2014-0021.
Pełny tekst źródłaWang, Liwei, Xiong Li, Zhuowen Tu, and Jiaya Jia. "Discriminative Clustering via Generative Feature Mapping." Proceedings of the AAAI Conference on Artificial Intelligence 26, no. 1 (2021): 1162–68. http://dx.doi.org/10.1609/aaai.v26i1.8305.
Pełny tekst źródłaBuscombe, Daniel, and Paul Grams. "Probabilistic Substrate Classification with Multispectral Acoustic Backscatter: A Comparison of Discriminative and Generative Models." Geosciences 8, no. 11 (2018): 395. http://dx.doi.org/10.3390/geosciences8110395.
Pełny tekst źródłaLuo, You-Wei, Chuan-Xian Ren, Pengfei Ge, Ke-Kun Huang, and Yu-Feng Yu. "Unsupervised Domain Adaptation via Discriminative Manifold Embedding and Alignment." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 5029–36. http://dx.doi.org/10.1609/aaai.v34i04.5943.
Pełny tekst źródłaKarami, Mahdi, and Dale Schuurmans. "Deep Probabilistic Canonical Correlation Analysis." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (2021): 8055–63. http://dx.doi.org/10.1609/aaai.v35i9.16982.
Pełny tekst źródłaCui, Bo, Guyue Hu, and Shan Yu. "DeepCollaboration: Collaborative Generative and Discriminative Models for Class Incremental Learning." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 2 (2021): 1175–83. http://dx.doi.org/10.1609/aaai.v35i2.16204.
Pełny tekst źródłaGordon, Jonathan, and José Miguel Hernández-Lobato. "Combining deep generative and discriminative models for Bayesian semi-supervised learning." Pattern Recognition 100 (April 2020): 107156. http://dx.doi.org/10.1016/j.patcog.2019.107156.
Pełny tekst źródłaBai, Wenjun, Changqin Quan, and Zhi-Wei Luo. "Improving Generative and Discriminative Modelling Performance by Implementing Learning Constraints in Encapsulated Variational Autoencoders." Applied Sciences 9, no. 12 (2019): 2551. http://dx.doi.org/10.3390/app9122551.
Pełny tekst źródłaLi, Fuqiang, Tongzhuang Zhang, Yong Liu, and Feiqi Long. "Deep Residual Vector Encoding for Vein Recognition." Electronics 11, no. 20 (2022): 3300. http://dx.doi.org/10.3390/electronics11203300.
Pełny tekst źródłaHu, Gang, Chahna Dixit, and Guanqiu Qi. "Discriminative Shape Feature Pooling in Deep Neural Networks." Journal of Imaging 8, no. 5 (2022): 118. http://dx.doi.org/10.3390/jimaging8050118.
Pełny tekst źródłaCoto-Jiménez, Marvin. "Discriminative Multi-Stream Postfilters Based on Deep Learning for Enhancing Statistical Parametric Speech Synthesis." Biomimetics 6, no. 1 (2021): 12. http://dx.doi.org/10.3390/biomimetics6010012.
Pełny tekst źródłaAdedigba, Adeyinka P., Steve A. Adeshina, and Abiodun M. Aibinu. "Performance Evaluation of Deep Learning Models on Mammogram Classification Using Small Dataset." Bioengineering 9, no. 4 (2022): 161. http://dx.doi.org/10.3390/bioengineering9040161.
Pełny tekst źródłaAlshazly, Hammam, Christoph Linse, Erhardt Barth, and Thomas Martinetz. "Ensembles of Deep Learning Models and Transfer Learning for Ear Recognition." Sensors 19, no. 19 (2019): 4139. http://dx.doi.org/10.3390/s19194139.
Pełny tekst źródłaMaroñas, Juan, Roberto Paredes, and Daniel Ramos. "Calibration of deep probabilistic models with decoupled bayesian neural networks." Neurocomputing 407 (September 2020): 194–205. http://dx.doi.org/10.1016/j.neucom.2020.04.103.
Pełny tekst źródłaLi, Zhenjun, Xi Liu, Dawei Kou, Yi Hu, Qingrui Zhang, and Qingxi Yuan. "Probabilistic Models for the Shear Strength of RC Deep Beams." Applied Sciences 13, no. 8 (2023): 4853. http://dx.doi.org/10.3390/app13084853.
Pełny tekst źródłaLiu, Shengyi. "Model Extraction Attack and Defense on Deep Generative Models." Journal of Physics: Conference Series 2189, no. 1 (2022): 012024. http://dx.doi.org/10.1088/1742-6596/2189/1/012024.
Pełny tekst źródłaBai, Shuang. "Scene Categorization Through Using Objects Represented by Deep Features." International Journal of Pattern Recognition and Artificial Intelligence 31, no. 09 (2017): 1755013. http://dx.doi.org/10.1142/s0218001417550138.
Pełny tekst źródłaKumar, Parmod, D. Suganthi, K. Valarmathi, et al. "A Multi-Thresholding-Based Discriminative Neural Classifier for Detection of Retinoblastoma Using CNN Models." BioMed Research International 2023 (February 6, 2023): 1–9. http://dx.doi.org/10.1155/2023/5803661.
Pełny tekst źródłaYu, Hee-Jin, Chang-Hwan Son, and Dong Hyuk Lee. "Apple Leaf Disease Identification Through Region-of-Interest-Aware Deep Convolutional Neural Network." Journal of Imaging Science and Technology 64, no. 2 (2020): 20507–1. http://dx.doi.org/10.2352/j.imagingsci.technol.2020.64.2.020507.
Pełny tekst źródłaBoursin, Nicolas, Carl Remlinger, and Joseph Mikael. "Deep Generators on Commodity Markets Application to Deep Hedging." Risks 11, no. 1 (2022): 7. http://dx.doi.org/10.3390/risks11010007.
Pełny tekst źródłaD’Andrea, Fabio, Pierre Gentine, Alan K. Betts, and Benjamin R. Lintner. "Triggering Deep Convection with a Probabilistic Plume Model." Journal of the Atmospheric Sciences 71, no. 11 (2014): 3881–901. http://dx.doi.org/10.1175/jas-d-13-0340.1.
Pełny tekst źródłaSerpell, Cristián, Ignacio A. Araya, Carlos Valle, and Héctor Allende. "Addressing model uncertainty in probabilistic forecasting using Monte Carlo dropout." Intelligent Data Analysis 24 (December 4, 2020): 185–205. http://dx.doi.org/10.3233/ida-200015.
Pełny tekst źródłaQian, Weizhu, Fabrice Lauri, and Franck Gechter. "Supervised and semi-supervised deep probabilistic models for indoor positioning problems." Neurocomputing 435 (May 2021): 228–38. http://dx.doi.org/10.1016/j.neucom.2020.12.131.
Pełny tekst źródłaWang, Wenzheng, Yuqi Han, Chenwei Deng, and Zhen Li. "Hyperspectral Image Classification via Deep Structure Dictionary Learning." Remote Sensing 14, no. 9 (2022): 2266. http://dx.doi.org/10.3390/rs14092266.
Pełny tekst źródłaAndrianomena, Sambatra. "Probabilistic learning for pulsar classification." Journal of Cosmology and Astroparticle Physics 2022, no. 10 (2022): 016. http://dx.doi.org/10.1088/1475-7516/2022/10/016.
Pełny tekst źródłaKim, Hyesuk, and Incheol Kim. "Dynamic Arm Gesture Recognition Using Spherical Angle Features and Hidden Markov Models." Advances in Human-Computer Interaction 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/785349.
Pełny tekst źródłaMurad, Abdulmajid, Frank Alexander Kraemer, Kerstin Bach, and Gavin Taylor. "Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting." Sensors 21, no. 23 (2021): 8009. http://dx.doi.org/10.3390/s21238009.
Pełny tekst źródłaAdams, Jadie. "Probabilistic Shape Models of Anatomy Directly from Images." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 13 (2023): 16107–8. http://dx.doi.org/10.1609/aaai.v37i13.26914.
Pełny tekst źródłaRavuri, Suman, Karel Lenc, Matthew Willson, et al. "Skilful precipitation nowcasting using deep generative models of radar." Nature 597, no. 7878 (2021): 672–77. http://dx.doi.org/10.1038/s41586-021-03854-z.
Pełny tekst źródłaHuang, Jiabo, Qi Dong, Shaogang Gong, and Xiatian Zhu. "Unsupervised Deep Learning via Affinity Diffusion." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 07 (2020): 11029–36. http://dx.doi.org/10.1609/aaai.v34i07.6757.
Pełny tekst źródłaCollins, Michael, and Terry Koo. "Discriminative Reranking for Natural Language Parsing." Computational Linguistics 31, no. 1 (2005): 25–70. http://dx.doi.org/10.1162/0891201053630273.
Pełny tekst źródłaMashlakov, Aleksei, Toni Kuronen, Lasse Lensu, Arto Kaarna, and Samuli Honkapuro. "Assessing the performance of deep learning models for multivariate probabilistic energy forecasting." Applied Energy 285 (March 2021): 116405. http://dx.doi.org/10.1016/j.apenergy.2020.116405.
Pełny tekst źródłaDuan, Yun. "A Novel Interval Energy-Forecasting Method for Sustainable Building Management Based on Deep Learning." Sustainability 14, no. 14 (2022): 8584. http://dx.doi.org/10.3390/su14148584.
Pełny tekst źródłaKrogh, Anders, and Søren Kamaric Riis. "Hidden Neural Networks." Neural Computation 11, no. 2 (1999): 541–63. http://dx.doi.org/10.1162/089976699300016764.
Pełny tekst źródła